Metamath Proof Explorer


Theorem chmaidscmat

Description: The characteristic polynomial of a matrix multiplied with the identity matrix is a scalar matrix. (Contributed by AV, 30-Oct-2019) (Revised by AV, 5-Jul-2022)

Ref Expression
Hypotheses chmaidscmat.a A=NMatR
chmaidscmat.b B=BaseA
chmaidscmat.c C=NCharPlyMatR
chmaidscmat.p P=Poly1R
chmaidscmat.e E=BaseP
chmaidscmat.y Y=NMatP
chmaidscmat.k K=BaseY
chmaidscmat.m ·˙=Y
chmaidscmat.1 1˙=1Y
chmaidscmat.d S=NScMatP
Assertion chmaidscmat NFinRCRingMBCM·˙1˙S

Proof

Step Hyp Ref Expression
1 chmaidscmat.a A=NMatR
2 chmaidscmat.b B=BaseA
3 chmaidscmat.c C=NCharPlyMatR
4 chmaidscmat.p P=Poly1R
5 chmaidscmat.e E=BaseP
6 chmaidscmat.y Y=NMatP
7 chmaidscmat.k K=BaseY
8 chmaidscmat.m ·˙=Y
9 chmaidscmat.1 1˙=1Y
10 chmaidscmat.d S=NScMatP
11 crngring RCRingRRing
12 4 ply1ring RRingPRing
13 11 12 syl RCRingPRing
14 13 anim2i NFinRCRingNFinPRing
15 14 3adant3 NFinRCRingMBNFinPRing
16 3 1 2 4 5 chpmatply1 NFinRCRingMBCME
17 4 6 pmatring NFinRRingYRing
18 11 17 sylan2 NFinRCRingYRing
19 7 9 ringidcl YRing1˙K
20 18 19 syl NFinRCRing1˙K
21 20 3adant3 NFinRCRingMB1˙K
22 5 6 7 8 matvscl NFinPRingCME1˙KCM·˙1˙K
23 15 16 21 22 syl12anc NFinRCRingMBCM·˙1˙K
24 risset CMEcEc=CM
25 oveq1 CM=cCM·˙1˙=c·˙1˙
26 25 eqcoms c=CMCM·˙1˙=c·˙1˙
27 26 a1i NFinRCRingMBcEc=CMCM·˙1˙=c·˙1˙
28 27 reximdva NFinRCRingMBcEc=CMcECM·˙1˙=c·˙1˙
29 28 com12 cEc=CMNFinRCRingMBcECM·˙1˙=c·˙1˙
30 24 29 sylbi CMENFinRCRingMBcECM·˙1˙=c·˙1˙
31 16 30 mpcom NFinRCRingMBcECM·˙1˙=c·˙1˙
32 5 6 7 9 8 10 scmatel NFinPRingCM·˙1˙SCM·˙1˙KcECM·˙1˙=c·˙1˙
33 15 32 syl NFinRCRingMBCM·˙1˙SCM·˙1˙KcECM·˙1˙=c·˙1˙
34 23 31 33 mpbir2and NFinRCRingMBCM·˙1˙S