| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chmaidscmat.a |  |-  A = ( N Mat R ) | 
						
							| 2 |  | chmaidscmat.b |  |-  B = ( Base ` A ) | 
						
							| 3 |  | chmaidscmat.c |  |-  C = ( N CharPlyMat R ) | 
						
							| 4 |  | chmaidscmat.p |  |-  P = ( Poly1 ` R ) | 
						
							| 5 |  | chmaidscmat.e |  |-  E = ( Base ` P ) | 
						
							| 6 |  | chmaidscmat.y |  |-  Y = ( N Mat P ) | 
						
							| 7 |  | chmaidscmat.k |  |-  K = ( Base ` Y ) | 
						
							| 8 |  | chmaidscmat.m |  |-  .x. = ( .s ` Y ) | 
						
							| 9 |  | chmaidscmat.1 |  |-  .1. = ( 1r ` Y ) | 
						
							| 10 |  | chmaidscmat.d |  |-  S = ( N ScMat P ) | 
						
							| 11 |  | crngring |  |-  ( R e. CRing -> R e. Ring ) | 
						
							| 12 | 4 | ply1ring |  |-  ( R e. Ring -> P e. Ring ) | 
						
							| 13 | 11 12 | syl |  |-  ( R e. CRing -> P e. Ring ) | 
						
							| 14 | 13 | anim2i |  |-  ( ( N e. Fin /\ R e. CRing ) -> ( N e. Fin /\ P e. Ring ) ) | 
						
							| 15 | 14 | 3adant3 |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( N e. Fin /\ P e. Ring ) ) | 
						
							| 16 | 3 1 2 4 5 | chpmatply1 |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( C ` M ) e. E ) | 
						
							| 17 | 4 6 | pmatring |  |-  ( ( N e. Fin /\ R e. Ring ) -> Y e. Ring ) | 
						
							| 18 | 11 17 | sylan2 |  |-  ( ( N e. Fin /\ R e. CRing ) -> Y e. Ring ) | 
						
							| 19 | 7 9 | ringidcl |  |-  ( Y e. Ring -> .1. e. K ) | 
						
							| 20 | 18 19 | syl |  |-  ( ( N e. Fin /\ R e. CRing ) -> .1. e. K ) | 
						
							| 21 | 20 | 3adant3 |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> .1. e. K ) | 
						
							| 22 | 5 6 7 8 | matvscl |  |-  ( ( ( N e. Fin /\ P e. Ring ) /\ ( ( C ` M ) e. E /\ .1. e. K ) ) -> ( ( C ` M ) .x. .1. ) e. K ) | 
						
							| 23 | 15 16 21 22 | syl12anc |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( ( C ` M ) .x. .1. ) e. K ) | 
						
							| 24 |  | risset |  |-  ( ( C ` M ) e. E <-> E. c e. E c = ( C ` M ) ) | 
						
							| 25 |  | oveq1 |  |-  ( ( C ` M ) = c -> ( ( C ` M ) .x. .1. ) = ( c .x. .1. ) ) | 
						
							| 26 | 25 | eqcoms |  |-  ( c = ( C ` M ) -> ( ( C ` M ) .x. .1. ) = ( c .x. .1. ) ) | 
						
							| 27 | 26 | a1i |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ c e. E ) -> ( c = ( C ` M ) -> ( ( C ` M ) .x. .1. ) = ( c .x. .1. ) ) ) | 
						
							| 28 | 27 | reximdva |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( E. c e. E c = ( C ` M ) -> E. c e. E ( ( C ` M ) .x. .1. ) = ( c .x. .1. ) ) ) | 
						
							| 29 | 28 | com12 |  |-  ( E. c e. E c = ( C ` M ) -> ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> E. c e. E ( ( C ` M ) .x. .1. ) = ( c .x. .1. ) ) ) | 
						
							| 30 | 24 29 | sylbi |  |-  ( ( C ` M ) e. E -> ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> E. c e. E ( ( C ` M ) .x. .1. ) = ( c .x. .1. ) ) ) | 
						
							| 31 | 16 30 | mpcom |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> E. c e. E ( ( C ` M ) .x. .1. ) = ( c .x. .1. ) ) | 
						
							| 32 | 5 6 7 9 8 10 | scmatel |  |-  ( ( N e. Fin /\ P e. Ring ) -> ( ( ( C ` M ) .x. .1. ) e. S <-> ( ( ( C ` M ) .x. .1. ) e. K /\ E. c e. E ( ( C ` M ) .x. .1. ) = ( c .x. .1. ) ) ) ) | 
						
							| 33 | 15 32 | syl |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( ( ( C ` M ) .x. .1. ) e. S <-> ( ( ( C ` M ) .x. .1. ) e. K /\ E. c e. E ( ( C ` M ) .x. .1. ) = ( c .x. .1. ) ) ) ) | 
						
							| 34 | 23 31 33 | mpbir2and |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( ( C ` M ) .x. .1. ) e. S ) |