Step |
Hyp |
Ref |
Expression |
1 |
|
chmaidscmat.a |
|- A = ( N Mat R ) |
2 |
|
chmaidscmat.b |
|- B = ( Base ` A ) |
3 |
|
chmaidscmat.c |
|- C = ( N CharPlyMat R ) |
4 |
|
chmaidscmat.p |
|- P = ( Poly1 ` R ) |
5 |
|
chmaidscmat.e |
|- E = ( Base ` P ) |
6 |
|
chmaidscmat.y |
|- Y = ( N Mat P ) |
7 |
|
chmaidscmat.k |
|- K = ( Base ` Y ) |
8 |
|
chmaidscmat.m |
|- .x. = ( .s ` Y ) |
9 |
|
chmaidscmat.1 |
|- .1. = ( 1r ` Y ) |
10 |
|
chmaidscmat.d |
|- S = ( N ScMat P ) |
11 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
12 |
4
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
13 |
11 12
|
syl |
|- ( R e. CRing -> P e. Ring ) |
14 |
13
|
anim2i |
|- ( ( N e. Fin /\ R e. CRing ) -> ( N e. Fin /\ P e. Ring ) ) |
15 |
14
|
3adant3 |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( N e. Fin /\ P e. Ring ) ) |
16 |
3 1 2 4 5
|
chpmatply1 |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( C ` M ) e. E ) |
17 |
4 6
|
pmatring |
|- ( ( N e. Fin /\ R e. Ring ) -> Y e. Ring ) |
18 |
11 17
|
sylan2 |
|- ( ( N e. Fin /\ R e. CRing ) -> Y e. Ring ) |
19 |
7 9
|
ringidcl |
|- ( Y e. Ring -> .1. e. K ) |
20 |
18 19
|
syl |
|- ( ( N e. Fin /\ R e. CRing ) -> .1. e. K ) |
21 |
20
|
3adant3 |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> .1. e. K ) |
22 |
5 6 7 8
|
matvscl |
|- ( ( ( N e. Fin /\ P e. Ring ) /\ ( ( C ` M ) e. E /\ .1. e. K ) ) -> ( ( C ` M ) .x. .1. ) e. K ) |
23 |
15 16 21 22
|
syl12anc |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( ( C ` M ) .x. .1. ) e. K ) |
24 |
|
risset |
|- ( ( C ` M ) e. E <-> E. c e. E c = ( C ` M ) ) |
25 |
|
oveq1 |
|- ( ( C ` M ) = c -> ( ( C ` M ) .x. .1. ) = ( c .x. .1. ) ) |
26 |
25
|
eqcoms |
|- ( c = ( C ` M ) -> ( ( C ` M ) .x. .1. ) = ( c .x. .1. ) ) |
27 |
26
|
a1i |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ c e. E ) -> ( c = ( C ` M ) -> ( ( C ` M ) .x. .1. ) = ( c .x. .1. ) ) ) |
28 |
27
|
reximdva |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( E. c e. E c = ( C ` M ) -> E. c e. E ( ( C ` M ) .x. .1. ) = ( c .x. .1. ) ) ) |
29 |
28
|
com12 |
|- ( E. c e. E c = ( C ` M ) -> ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> E. c e. E ( ( C ` M ) .x. .1. ) = ( c .x. .1. ) ) ) |
30 |
24 29
|
sylbi |
|- ( ( C ` M ) e. E -> ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> E. c e. E ( ( C ` M ) .x. .1. ) = ( c .x. .1. ) ) ) |
31 |
16 30
|
mpcom |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> E. c e. E ( ( C ` M ) .x. .1. ) = ( c .x. .1. ) ) |
32 |
5 6 7 9 8 10
|
scmatel |
|- ( ( N e. Fin /\ P e. Ring ) -> ( ( ( C ` M ) .x. .1. ) e. S <-> ( ( ( C ` M ) .x. .1. ) e. K /\ E. c e. E ( ( C ` M ) .x. .1. ) = ( c .x. .1. ) ) ) ) |
33 |
15 32
|
syl |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( ( ( C ` M ) .x. .1. ) e. S <-> ( ( ( C ` M ) .x. .1. ) e. K /\ E. c e. E ( ( C ` M ) .x. .1. ) = ( c .x. .1. ) ) ) ) |
34 |
23 31 33
|
mpbir2and |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( ( C ` M ) .x. .1. ) e. S ) |