Metamath Proof Explorer


Theorem chmaidscmat

Description: The characteristic polynomial of a matrix multiplied with the identity matrix is a scalar matrix. (Contributed by AV, 30-Oct-2019) (Revised by AV, 5-Jul-2022)

Ref Expression
Hypotheses chmaidscmat.a
|- A = ( N Mat R )
chmaidscmat.b
|- B = ( Base ` A )
chmaidscmat.c
|- C = ( N CharPlyMat R )
chmaidscmat.p
|- P = ( Poly1 ` R )
chmaidscmat.e
|- E = ( Base ` P )
chmaidscmat.y
|- Y = ( N Mat P )
chmaidscmat.k
|- K = ( Base ` Y )
chmaidscmat.m
|- .x. = ( .s ` Y )
chmaidscmat.1
|- .1. = ( 1r ` Y )
chmaidscmat.d
|- S = ( N ScMat P )
Assertion chmaidscmat
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( ( C ` M ) .x. .1. ) e. S )

Proof

Step Hyp Ref Expression
1 chmaidscmat.a
 |-  A = ( N Mat R )
2 chmaidscmat.b
 |-  B = ( Base ` A )
3 chmaidscmat.c
 |-  C = ( N CharPlyMat R )
4 chmaidscmat.p
 |-  P = ( Poly1 ` R )
5 chmaidscmat.e
 |-  E = ( Base ` P )
6 chmaidscmat.y
 |-  Y = ( N Mat P )
7 chmaidscmat.k
 |-  K = ( Base ` Y )
8 chmaidscmat.m
 |-  .x. = ( .s ` Y )
9 chmaidscmat.1
 |-  .1. = ( 1r ` Y )
10 chmaidscmat.d
 |-  S = ( N ScMat P )
11 crngring
 |-  ( R e. CRing -> R e. Ring )
12 4 ply1ring
 |-  ( R e. Ring -> P e. Ring )
13 11 12 syl
 |-  ( R e. CRing -> P e. Ring )
14 13 anim2i
 |-  ( ( N e. Fin /\ R e. CRing ) -> ( N e. Fin /\ P e. Ring ) )
15 14 3adant3
 |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( N e. Fin /\ P e. Ring ) )
16 3 1 2 4 5 chpmatply1
 |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( C ` M ) e. E )
17 4 6 pmatring
 |-  ( ( N e. Fin /\ R e. Ring ) -> Y e. Ring )
18 11 17 sylan2
 |-  ( ( N e. Fin /\ R e. CRing ) -> Y e. Ring )
19 7 9 ringidcl
 |-  ( Y e. Ring -> .1. e. K )
20 18 19 syl
 |-  ( ( N e. Fin /\ R e. CRing ) -> .1. e. K )
21 20 3adant3
 |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> .1. e. K )
22 5 6 7 8 matvscl
 |-  ( ( ( N e. Fin /\ P e. Ring ) /\ ( ( C ` M ) e. E /\ .1. e. K ) ) -> ( ( C ` M ) .x. .1. ) e. K )
23 15 16 21 22 syl12anc
 |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( ( C ` M ) .x. .1. ) e. K )
24 risset
 |-  ( ( C ` M ) e. E <-> E. c e. E c = ( C ` M ) )
25 oveq1
 |-  ( ( C ` M ) = c -> ( ( C ` M ) .x. .1. ) = ( c .x. .1. ) )
26 25 eqcoms
 |-  ( c = ( C ` M ) -> ( ( C ` M ) .x. .1. ) = ( c .x. .1. ) )
27 26 a1i
 |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ c e. E ) -> ( c = ( C ` M ) -> ( ( C ` M ) .x. .1. ) = ( c .x. .1. ) ) )
28 27 reximdva
 |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( E. c e. E c = ( C ` M ) -> E. c e. E ( ( C ` M ) .x. .1. ) = ( c .x. .1. ) ) )
29 28 com12
 |-  ( E. c e. E c = ( C ` M ) -> ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> E. c e. E ( ( C ` M ) .x. .1. ) = ( c .x. .1. ) ) )
30 24 29 sylbi
 |-  ( ( C ` M ) e. E -> ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> E. c e. E ( ( C ` M ) .x. .1. ) = ( c .x. .1. ) ) )
31 16 30 mpcom
 |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> E. c e. E ( ( C ` M ) .x. .1. ) = ( c .x. .1. ) )
32 5 6 7 9 8 10 scmatel
 |-  ( ( N e. Fin /\ P e. Ring ) -> ( ( ( C ` M ) .x. .1. ) e. S <-> ( ( ( C ` M ) .x. .1. ) e. K /\ E. c e. E ( ( C ` M ) .x. .1. ) = ( c .x. .1. ) ) ) )
33 15 32 syl
 |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( ( ( C ` M ) .x. .1. ) e. S <-> ( ( ( C ` M ) .x. .1. ) e. K /\ E. c e. E ( ( C ` M ) .x. .1. ) = ( c .x. .1. ) ) ) )
34 23 31 33 mpbir2and
 |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( ( C ` M ) .x. .1. ) e. S )