| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cmpfiiin.x |
⊢ 𝑋 = ∪ 𝐽 |
| 2 |
|
cmpfiiin.j |
⊢ ( 𝜑 → 𝐽 ∈ Comp ) |
| 3 |
|
cmpfiiin.s |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) |
| 4 |
|
cmpfiiin.z |
⊢ ( ( 𝜑 ∧ ( 𝑙 ⊆ 𝐼 ∧ 𝑙 ∈ Fin ) ) → ( 𝑋 ∩ ∩ 𝑘 ∈ 𝑙 𝑆 ) ≠ ∅ ) |
| 5 |
|
cmptop |
⊢ ( 𝐽 ∈ Comp → 𝐽 ∈ Top ) |
| 6 |
2 5
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 7 |
1
|
topcld |
⊢ ( 𝐽 ∈ Top → 𝑋 ∈ ( Clsd ‘ 𝐽 ) ) |
| 8 |
6 7
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ ( Clsd ‘ 𝐽 ) ) |
| 9 |
1
|
cldss |
⊢ ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) → 𝑆 ⊆ 𝑋 ) |
| 10 |
3 9
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → 𝑆 ⊆ 𝑋 ) |
| 11 |
10
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋 ) |
| 12 |
|
riinint |
⊢ ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ∀ 𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋 ) → ( 𝑋 ∩ ∩ 𝑘 ∈ 𝐼 𝑆 ) = ∩ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐼 ↦ 𝑆 ) ) ) |
| 13 |
8 11 12
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 ∩ ∩ 𝑘 ∈ 𝐼 𝑆 ) = ∩ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐼 ↦ 𝑆 ) ) ) |
| 14 |
8
|
snssd |
⊢ ( 𝜑 → { 𝑋 } ⊆ ( Clsd ‘ 𝐽 ) ) |
| 15 |
3
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐼 ↦ 𝑆 ) : 𝐼 ⟶ ( Clsd ‘ 𝐽 ) ) |
| 16 |
15
|
frnd |
⊢ ( 𝜑 → ran ( 𝑘 ∈ 𝐼 ↦ 𝑆 ) ⊆ ( Clsd ‘ 𝐽 ) ) |
| 17 |
14 16
|
unssd |
⊢ ( 𝜑 → ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐼 ↦ 𝑆 ) ) ⊆ ( Clsd ‘ 𝐽 ) ) |
| 18 |
|
elin |
⊢ ( 𝑙 ∈ ( 𝒫 𝐼 ∩ Fin ) ↔ ( 𝑙 ∈ 𝒫 𝐼 ∧ 𝑙 ∈ Fin ) ) |
| 19 |
|
elpwi |
⊢ ( 𝑙 ∈ 𝒫 𝐼 → 𝑙 ⊆ 𝐼 ) |
| 20 |
19
|
anim1i |
⊢ ( ( 𝑙 ∈ 𝒫 𝐼 ∧ 𝑙 ∈ Fin ) → ( 𝑙 ⊆ 𝐼 ∧ 𝑙 ∈ Fin ) ) |
| 21 |
18 20
|
sylbi |
⊢ ( 𝑙 ∈ ( 𝒫 𝐼 ∩ Fin ) → ( 𝑙 ⊆ 𝐼 ∧ 𝑙 ∈ Fin ) ) |
| 22 |
|
nesym |
⊢ ( ( 𝑋 ∩ ∩ 𝑘 ∈ 𝑙 𝑆 ) ≠ ∅ ↔ ¬ ∅ = ( 𝑋 ∩ ∩ 𝑘 ∈ 𝑙 𝑆 ) ) |
| 23 |
4 22
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑙 ⊆ 𝐼 ∧ 𝑙 ∈ Fin ) ) → ¬ ∅ = ( 𝑋 ∩ ∩ 𝑘 ∈ 𝑙 𝑆 ) ) |
| 24 |
21 23
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ( 𝒫 𝐼 ∩ Fin ) ) → ¬ ∅ = ( 𝑋 ∩ ∩ 𝑘 ∈ 𝑙 𝑆 ) ) |
| 25 |
24
|
nrexdv |
⊢ ( 𝜑 → ¬ ∃ 𝑙 ∈ ( 𝒫 𝐼 ∩ Fin ) ∅ = ( 𝑋 ∩ ∩ 𝑘 ∈ 𝑙 𝑆 ) ) |
| 26 |
|
elrfirn2 |
⊢ ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ∀ 𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋 ) → ( ∅ ∈ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐼 ↦ 𝑆 ) ) ) ↔ ∃ 𝑙 ∈ ( 𝒫 𝐼 ∩ Fin ) ∅ = ( 𝑋 ∩ ∩ 𝑘 ∈ 𝑙 𝑆 ) ) ) |
| 27 |
8 11 26
|
syl2anc |
⊢ ( 𝜑 → ( ∅ ∈ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐼 ↦ 𝑆 ) ) ) ↔ ∃ 𝑙 ∈ ( 𝒫 𝐼 ∩ Fin ) ∅ = ( 𝑋 ∩ ∩ 𝑘 ∈ 𝑙 𝑆 ) ) ) |
| 28 |
25 27
|
mtbird |
⊢ ( 𝜑 → ¬ ∅ ∈ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐼 ↦ 𝑆 ) ) ) ) |
| 29 |
|
cmpfii |
⊢ ( ( 𝐽 ∈ Comp ∧ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐼 ↦ 𝑆 ) ) ⊆ ( Clsd ‘ 𝐽 ) ∧ ¬ ∅ ∈ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐼 ↦ 𝑆 ) ) ) ) → ∩ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐼 ↦ 𝑆 ) ) ≠ ∅ ) |
| 30 |
2 17 28 29
|
syl3anc |
⊢ ( 𝜑 → ∩ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐼 ↦ 𝑆 ) ) ≠ ∅ ) |
| 31 |
13 30
|
eqnetrd |
⊢ ( 𝜑 → ( 𝑋 ∩ ∩ 𝑘 ∈ 𝐼 𝑆 ) ≠ ∅ ) |