| Step |
Hyp |
Ref |
Expression |
| 1 |
|
coe1fzgsumd.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
coe1fzgsumd.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
| 3 |
|
coe1fzgsumd.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 4 |
|
coe1fzgsumd.k |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
| 5 |
|
ralunb |
⊢ ( ∀ 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) 𝑀 ∈ 𝐵 ↔ ( ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) ) |
| 6 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑀 |
| 7 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝑀 |
| 8 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → 𝑀 = ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) |
| 9 |
6 7 8
|
cbvmpt |
⊢ ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) = ( 𝑦 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) |
| 10 |
9
|
oveq2i |
⊢ ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) = ( 𝑃 Σg ( 𝑦 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ) |
| 11 |
|
eqid |
⊢ ( +g ‘ 𝑃 ) = ( +g ‘ 𝑃 ) |
| 12 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
| 13 |
3 12
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
| 14 |
|
ringcmn |
⊢ ( 𝑃 ∈ Ring → 𝑃 ∈ CMnd ) |
| 15 |
13 14
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ CMnd ) |
| 16 |
15
|
3ad2ant3 |
⊢ ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) → 𝑃 ∈ CMnd ) |
| 17 |
16
|
ad2antrr |
⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → 𝑃 ∈ CMnd ) |
| 18 |
|
simpll1 |
⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → 𝑚 ∈ Fin ) |
| 19 |
|
rspcsbela |
⊢ ( ( 𝑦 ∈ 𝑚 ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ∈ 𝐵 ) |
| 20 |
19
|
expcom |
⊢ ( ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 → ( 𝑦 ∈ 𝑚 → ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ∈ 𝐵 ) ) |
| 21 |
20
|
adantl |
⊢ ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) → ( 𝑦 ∈ 𝑚 → ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ∈ 𝐵 ) ) |
| 22 |
21
|
adantr |
⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → ( 𝑦 ∈ 𝑚 → ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ∈ 𝐵 ) ) |
| 23 |
22
|
imp |
⊢ ( ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝑚 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ∈ 𝐵 ) |
| 24 |
|
vex |
⊢ 𝑎 ∈ V |
| 25 |
24
|
a1i |
⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → 𝑎 ∈ V ) |
| 26 |
|
simpll2 |
⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → ¬ 𝑎 ∈ 𝑚 ) |
| 27 |
|
vsnid |
⊢ 𝑎 ∈ { 𝑎 } |
| 28 |
|
rspcsbela |
⊢ ( ( 𝑎 ∈ { 𝑎 } ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ∈ 𝐵 ) |
| 29 |
27 28
|
mpan |
⊢ ( ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 → ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ∈ 𝐵 ) |
| 30 |
29
|
adantl |
⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ∈ 𝐵 ) |
| 31 |
|
csbeq1 |
⊢ ( 𝑦 = 𝑎 → ⦋ 𝑦 / 𝑥 ⦌ 𝑀 = ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) |
| 32 |
2 11 17 18 23 25 26 30 31
|
gsumunsn |
⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → ( 𝑃 Σg ( 𝑦 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ) = ( ( 𝑃 Σg ( 𝑦 ∈ 𝑚 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ) ( +g ‘ 𝑃 ) ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ) |
| 33 |
10 32
|
eqtrid |
⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) = ( ( 𝑃 Σg ( 𝑦 ∈ 𝑚 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ) ( +g ‘ 𝑃 ) ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ) |
| 34 |
6 7 8
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) = ( 𝑦 ∈ 𝑚 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) |
| 35 |
34
|
eqcomi |
⊢ ( 𝑦 ∈ 𝑚 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) = ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) |
| 36 |
35
|
oveq2i |
⊢ ( 𝑃 Σg ( 𝑦 ∈ 𝑚 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ) = ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) |
| 37 |
36
|
oveq1i |
⊢ ( ( 𝑃 Σg ( 𝑦 ∈ 𝑚 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ) ( +g ‘ 𝑃 ) ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) = ( ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ( +g ‘ 𝑃 ) ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) |
| 38 |
33 37
|
eqtrdi |
⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) = ( ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ( +g ‘ 𝑃 ) ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ) |
| 39 |
38
|
fveq2d |
⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) ) = ( coe1 ‘ ( ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ( +g ‘ 𝑃 ) ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ) ) |
| 40 |
39
|
fveq1d |
⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( ( coe1 ‘ ( ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ( +g ‘ 𝑃 ) ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ) ‘ 𝐾 ) ) |
| 41 |
3
|
3ad2ant3 |
⊢ ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) → 𝑅 ∈ Ring ) |
| 42 |
41
|
ad2antrr |
⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → 𝑅 ∈ Ring ) |
| 43 |
|
simplr |
⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) |
| 44 |
2 17 18 43
|
gsummptcl |
⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ∈ 𝐵 ) |
| 45 |
4
|
3ad2ant3 |
⊢ ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) → 𝐾 ∈ ℕ0 ) |
| 46 |
45
|
ad2antrr |
⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → 𝐾 ∈ ℕ0 ) |
| 47 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
| 48 |
1 2 11 47
|
coe1addfv |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ∈ 𝐵 ∧ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) → ( ( coe1 ‘ ( ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ( +g ‘ 𝑃 ) ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ) ‘ 𝐾 ) = ( ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ‘ 𝐾 ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ‘ 𝐾 ) ) ) |
| 49 |
42 44 30 46 48
|
syl31anc |
⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → ( ( coe1 ‘ ( ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ( +g ‘ 𝑃 ) ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ) ‘ 𝐾 ) = ( ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ‘ 𝐾 ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ‘ 𝐾 ) ) ) |
| 50 |
40 49
|
eqtrd |
⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ‘ 𝐾 ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ‘ 𝐾 ) ) ) |
| 51 |
|
oveq1 |
⊢ ( ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) → ( ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ‘ 𝐾 ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ‘ 𝐾 ) ) = ( ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ‘ 𝐾 ) ) ) |
| 52 |
50 51
|
sylan9eq |
⊢ ( ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) ∧ ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ‘ 𝐾 ) ) ) |
| 53 |
|
nfcv |
⊢ Ⅎ 𝑦 ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) |
| 54 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) |
| 55 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) = ⦋ 𝑦 / 𝑥 ⦌ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) |
| 56 |
53 54 55
|
cbvmpt |
⊢ ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) = ( 𝑦 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) |
| 57 |
56
|
oveq2i |
⊢ ( 𝑅 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) = ( 𝑅 Σg ( 𝑦 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) |
| 58 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 59 |
|
ringcmn |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ CMnd ) |
| 60 |
3 59
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ CMnd ) |
| 61 |
60
|
3ad2ant3 |
⊢ ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) → 𝑅 ∈ CMnd ) |
| 62 |
61
|
ad2antrr |
⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → 𝑅 ∈ CMnd ) |
| 63 |
|
csbfv12 |
⊢ ⦋ 𝑦 / 𝑥 ⦌ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) = ( ⦋ 𝑦 / 𝑥 ⦌ ( coe1 ‘ 𝑀 ) ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝐾 ) |
| 64 |
|
csbfv2g |
⊢ ( 𝑦 ∈ V → ⦋ 𝑦 / 𝑥 ⦌ ( coe1 ‘ 𝑀 ) = ( coe1 ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ) |
| 65 |
64
|
elv |
⊢ ⦋ 𝑦 / 𝑥 ⦌ ( coe1 ‘ 𝑀 ) = ( coe1 ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) |
| 66 |
|
csbconstg |
⊢ ( 𝑦 ∈ V → ⦋ 𝑦 / 𝑥 ⦌ 𝐾 = 𝐾 ) |
| 67 |
66
|
elv |
⊢ ⦋ 𝑦 / 𝑥 ⦌ 𝐾 = 𝐾 |
| 68 |
65 67
|
fveq12i |
⊢ ( ⦋ 𝑦 / 𝑥 ⦌ ( coe1 ‘ 𝑀 ) ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝐾 ) = ( ( coe1 ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ‘ 𝐾 ) |
| 69 |
63 68
|
eqtri |
⊢ ⦋ 𝑦 / 𝑥 ⦌ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) = ( ( coe1 ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ‘ 𝐾 ) |
| 70 |
|
eqid |
⊢ ( coe1 ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) = ( coe1 ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) |
| 71 |
70 2 1 58
|
coe1f |
⊢ ( ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ∈ 𝐵 → ( coe1 ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
| 72 |
23 71
|
syl |
⊢ ( ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝑚 ) → ( coe1 ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
| 73 |
45
|
adantr |
⊢ ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) → 𝐾 ∈ ℕ0 ) |
| 74 |
73
|
ad2antrr |
⊢ ( ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝑚 ) → 𝐾 ∈ ℕ0 ) |
| 75 |
72 74
|
ffvelcdmd |
⊢ ( ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝑚 ) → ( ( coe1 ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ‘ 𝐾 ) ∈ ( Base ‘ 𝑅 ) ) |
| 76 |
69 75
|
eqeltrid |
⊢ ( ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝑚 ) → ⦋ 𝑦 / 𝑥 ⦌ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ∈ ( Base ‘ 𝑅 ) ) |
| 77 |
|
eqid |
⊢ ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) = ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) |
| 78 |
77 2 1 58
|
coe1f |
⊢ ( ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ∈ 𝐵 → ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
| 79 |
30 78
|
syl |
⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
| 80 |
79 46
|
ffvelcdmd |
⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → ( ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ‘ 𝐾 ) ∈ ( Base ‘ 𝑅 ) ) |
| 81 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑎 |
| 82 |
|
nfcv |
⊢ Ⅎ 𝑥 coe1 |
| 83 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑎 / 𝑥 ⦌ 𝑀 |
| 84 |
82 83
|
nffv |
⊢ Ⅎ 𝑥 ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) |
| 85 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐾 |
| 86 |
84 85
|
nffv |
⊢ Ⅎ 𝑥 ( ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ‘ 𝐾 ) |
| 87 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑎 → 𝑀 = ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) |
| 88 |
87
|
fveq2d |
⊢ ( 𝑥 = 𝑎 → ( coe1 ‘ 𝑀 ) = ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ) |
| 89 |
88
|
fveq1d |
⊢ ( 𝑥 = 𝑎 → ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) = ( ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ‘ 𝐾 ) ) |
| 90 |
81 86 89
|
csbhypf |
⊢ ( 𝑦 = 𝑎 → ⦋ 𝑦 / 𝑥 ⦌ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) = ( ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ‘ 𝐾 ) ) |
| 91 |
58 47 62 18 76 25 26 80 90
|
gsumunsn |
⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → ( 𝑅 Σg ( 𝑦 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) = ( ( 𝑅 Σg ( 𝑦 ∈ 𝑚 ↦ ⦋ 𝑦 / 𝑥 ⦌ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ‘ 𝐾 ) ) ) |
| 92 |
57 91
|
eqtrid |
⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → ( 𝑅 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) = ( ( 𝑅 Σg ( 𝑦 ∈ 𝑚 ↦ ⦋ 𝑦 / 𝑥 ⦌ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ‘ 𝐾 ) ) ) |
| 93 |
53 54 55
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) = ( 𝑦 ∈ 𝑚 ↦ ⦋ 𝑦 / 𝑥 ⦌ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) |
| 94 |
93
|
eqcomi |
⊢ ( 𝑦 ∈ 𝑚 ↦ ⦋ 𝑦 / 𝑥 ⦌ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) = ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) |
| 95 |
94
|
oveq2i |
⊢ ( 𝑅 Σg ( 𝑦 ∈ 𝑚 ↦ ⦋ 𝑦 / 𝑥 ⦌ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) |
| 96 |
95
|
oveq1i |
⊢ ( ( 𝑅 Σg ( 𝑦 ∈ 𝑚 ↦ ⦋ 𝑦 / 𝑥 ⦌ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ‘ 𝐾 ) ) = ( ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ‘ 𝐾 ) ) |
| 97 |
92 96
|
eqtr2di |
⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → ( ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ‘ 𝐾 ) ) = ( 𝑅 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) |
| 98 |
97
|
adantr |
⊢ ( ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) ∧ ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) → ( ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ‘ 𝐾 ) ) = ( 𝑅 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) |
| 99 |
52 98
|
eqtrd |
⊢ ( ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) ∧ ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) |
| 100 |
99
|
exp31 |
⊢ ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 → ( ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) ) ) |
| 101 |
100
|
com23 |
⊢ ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) → ( ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) → ( ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) ) ) |
| 102 |
101
|
ex |
⊢ ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) → ( ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 → ( ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) → ( ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) ) ) ) |
| 103 |
102
|
a2d |
⊢ ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) → ( ( ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) → ( ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 → ( ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) ) ) ) |
| 104 |
103
|
imp4b |
⊢ ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ( ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) ) → ( ( ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) ) |
| 105 |
5 104
|
biimtrid |
⊢ ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ( ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) ) → ( ∀ 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) 𝑀 ∈ 𝐵 → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) ) |
| 106 |
105
|
ex |
⊢ ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) → ( ( ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) → ( ∀ 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) 𝑀 ∈ 𝐵 → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) ) ) |