| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cstucnd.1 |
⊢ ( 𝜑 → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) |
| 2 |
|
cstucnd.2 |
⊢ ( 𝜑 → 𝑉 ∈ ( UnifOn ‘ 𝑌 ) ) |
| 3 |
|
cstucnd.3 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑌 ) |
| 4 |
|
fconst6g |
⊢ ( 𝐴 ∈ 𝑌 → ( 𝑋 × { 𝐴 } ) : 𝑋 ⟶ 𝑌 ) |
| 5 |
3 4
|
syl |
⊢ ( 𝜑 → ( 𝑋 × { 𝐴 } ) : 𝑋 ⟶ 𝑌 ) |
| 6 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑉 ) → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) |
| 7 |
|
ustne0 |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑈 ≠ ∅ ) |
| 8 |
6 7
|
syl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑉 ) → 𝑈 ≠ ∅ ) |
| 9 |
2
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑉 ) ∧ 𝑟 ∈ 𝑈 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑉 ∈ ( UnifOn ‘ 𝑌 ) ) |
| 10 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑉 ) ∧ 𝑟 ∈ 𝑈 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑠 ∈ 𝑉 ) |
| 11 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑉 ) ∧ 𝑟 ∈ 𝑈 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝐴 ∈ 𝑌 ) |
| 12 |
|
ustref |
⊢ ( ( 𝑉 ∈ ( UnifOn ‘ 𝑌 ) ∧ 𝑠 ∈ 𝑉 ∧ 𝐴 ∈ 𝑌 ) → 𝐴 𝑠 𝐴 ) |
| 13 |
9 10 11 12
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑉 ) ∧ 𝑟 ∈ 𝑈 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝐴 𝑠 𝐴 ) |
| 14 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑉 ) ∧ 𝑟 ∈ 𝑈 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑥 ∈ 𝑋 ) |
| 15 |
|
fvconst2g |
⊢ ( ( 𝐴 ∈ 𝑌 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑋 × { 𝐴 } ) ‘ 𝑥 ) = 𝐴 ) |
| 16 |
11 14 15
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑉 ) ∧ 𝑟 ∈ 𝑈 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝑋 × { 𝐴 } ) ‘ 𝑥 ) = 𝐴 ) |
| 17 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑉 ) ∧ 𝑟 ∈ 𝑈 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑦 ∈ 𝑋 ) |
| 18 |
|
fvconst2g |
⊢ ( ( 𝐴 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑋 × { 𝐴 } ) ‘ 𝑦 ) = 𝐴 ) |
| 19 |
11 17 18
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑉 ) ∧ 𝑟 ∈ 𝑈 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝑋 × { 𝐴 } ) ‘ 𝑦 ) = 𝐴 ) |
| 20 |
13 16 19
|
3brtr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑉 ) ∧ 𝑟 ∈ 𝑈 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝑋 × { 𝐴 } ) ‘ 𝑥 ) 𝑠 ( ( 𝑋 × { 𝐴 } ) ‘ 𝑦 ) ) |
| 21 |
20
|
a1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑉 ) ∧ 𝑟 ∈ 𝑈 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝑟 𝑦 → ( ( 𝑋 × { 𝐴 } ) ‘ 𝑥 ) 𝑠 ( ( 𝑋 × { 𝐴 } ) ‘ 𝑦 ) ) ) |
| 22 |
21
|
ralrimivva |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑉 ) ∧ 𝑟 ∈ 𝑈 ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( ( 𝑋 × { 𝐴 } ) ‘ 𝑥 ) 𝑠 ( ( 𝑋 × { 𝐴 } ) ‘ 𝑦 ) ) ) |
| 23 |
22
|
reximdva0 |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑉 ) ∧ 𝑈 ≠ ∅ ) → ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( ( 𝑋 × { 𝐴 } ) ‘ 𝑥 ) 𝑠 ( ( 𝑋 × { 𝐴 } ) ‘ 𝑦 ) ) ) |
| 24 |
8 23
|
mpdan |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑉 ) → ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( ( 𝑋 × { 𝐴 } ) ‘ 𝑥 ) 𝑠 ( ( 𝑋 × { 𝐴 } ) ‘ 𝑦 ) ) ) |
| 25 |
24
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑠 ∈ 𝑉 ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( ( 𝑋 × { 𝐴 } ) ‘ 𝑥 ) 𝑠 ( ( 𝑋 × { 𝐴 } ) ‘ 𝑦 ) ) ) |
| 26 |
|
isucn |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ ( UnifOn ‘ 𝑌 ) ) → ( ( 𝑋 × { 𝐴 } ) ∈ ( 𝑈 Cnu 𝑉 ) ↔ ( ( 𝑋 × { 𝐴 } ) : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑠 ∈ 𝑉 ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( ( 𝑋 × { 𝐴 } ) ‘ 𝑥 ) 𝑠 ( ( 𝑋 × { 𝐴 } ) ‘ 𝑦 ) ) ) ) ) |
| 27 |
1 2 26
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑋 × { 𝐴 } ) ∈ ( 𝑈 Cnu 𝑉 ) ↔ ( ( 𝑋 × { 𝐴 } ) : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑠 ∈ 𝑉 ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( ( 𝑋 × { 𝐴 } ) ‘ 𝑥 ) 𝑠 ( ( 𝑋 × { 𝐴 } ) ‘ 𝑦 ) ) ) ) ) |
| 28 |
5 25 27
|
mpbir2and |
⊢ ( 𝜑 → ( 𝑋 × { 𝐴 } ) ∈ ( 𝑈 Cnu 𝑉 ) ) |