Metamath Proof Explorer


Theorem cvlexchb1

Description: An atomic covering lattice has the exchange property. (Contributed by NM, 16-Nov-2011)

Ref Expression
Hypotheses cvlexch.b 𝐵 = ( Base ‘ 𝐾 )
cvlexch.l = ( le ‘ 𝐾 )
cvlexch.j = ( join ‘ 𝐾 )
cvlexch.a 𝐴 = ( Atoms ‘ 𝐾 )
Assertion cvlexchb1 ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑋𝐵 ) ∧ ¬ 𝑃 𝑋 ) → ( 𝑃 ( 𝑋 𝑄 ) ↔ ( 𝑋 𝑃 ) = ( 𝑋 𝑄 ) ) )

Proof

Step Hyp Ref Expression
1 cvlexch.b 𝐵 = ( Base ‘ 𝐾 )
2 cvlexch.l = ( le ‘ 𝐾 )
3 cvlexch.j = ( join ‘ 𝐾 )
4 cvlexch.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cvllat ( 𝐾 ∈ CvLat → 𝐾 ∈ Lat )
6 5 adantr ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑋𝐵 ) ) → 𝐾 ∈ Lat )
7 simpr3 ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑋𝐵 ) ) → 𝑋𝐵 )
8 simpr2 ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑋𝐵 ) ) → 𝑄𝐴 )
9 1 4 atbase ( 𝑄𝐴𝑄𝐵 )
10 8 9 syl ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑋𝐵 ) ) → 𝑄𝐵 )
11 1 2 3 latlej1 ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑄𝐵 ) → 𝑋 ( 𝑋 𝑄 ) )
12 6 7 10 11 syl3anc ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑋𝐵 ) ) → 𝑋 ( 𝑋 𝑄 ) )
13 12 3adant3 ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑋𝐵 ) ∧ ¬ 𝑃 𝑋 ) → 𝑋 ( 𝑋 𝑄 ) )
14 13 adantr ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑋𝐵 ) ∧ ¬ 𝑃 𝑋 ) ∧ 𝑃 ( 𝑋 𝑄 ) ) → 𝑋 ( 𝑋 𝑄 ) )
15 simpr ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑋𝐵 ) ∧ ¬ 𝑃 𝑋 ) ∧ 𝑃 ( 𝑋 𝑄 ) ) → 𝑃 ( 𝑋 𝑄 ) )
16 simpr1 ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑋𝐵 ) ) → 𝑃𝐴 )
17 1 4 atbase ( 𝑃𝐴𝑃𝐵 )
18 16 17 syl ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑋𝐵 ) ) → 𝑃𝐵 )
19 1 3 latjcl ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑄𝐵 ) → ( 𝑋 𝑄 ) ∈ 𝐵 )
20 6 7 10 19 syl3anc ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑋𝐵 ) ) → ( 𝑋 𝑄 ) ∈ 𝐵 )
21 1 2 3 latjle12 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑃𝐵 ∧ ( 𝑋 𝑄 ) ∈ 𝐵 ) ) → ( ( 𝑋 ( 𝑋 𝑄 ) ∧ 𝑃 ( 𝑋 𝑄 ) ) ↔ ( 𝑋 𝑃 ) ( 𝑋 𝑄 ) ) )
22 6 7 18 20 21 syl13anc ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑋𝐵 ) ) → ( ( 𝑋 ( 𝑋 𝑄 ) ∧ 𝑃 ( 𝑋 𝑄 ) ) ↔ ( 𝑋 𝑃 ) ( 𝑋 𝑄 ) ) )
23 22 3adant3 ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑋𝐵 ) ∧ ¬ 𝑃 𝑋 ) → ( ( 𝑋 ( 𝑋 𝑄 ) ∧ 𝑃 ( 𝑋 𝑄 ) ) ↔ ( 𝑋 𝑃 ) ( 𝑋 𝑄 ) ) )
24 23 adantr ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑋𝐵 ) ∧ ¬ 𝑃 𝑋 ) ∧ 𝑃 ( 𝑋 𝑄 ) ) → ( ( 𝑋 ( 𝑋 𝑄 ) ∧ 𝑃 ( 𝑋 𝑄 ) ) ↔ ( 𝑋 𝑃 ) ( 𝑋 𝑄 ) ) )
25 14 15 24 mpbi2and ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑋𝐵 ) ∧ ¬ 𝑃 𝑋 ) ∧ 𝑃 ( 𝑋 𝑄 ) ) → ( 𝑋 𝑃 ) ( 𝑋 𝑄 ) )
26 1 2 3 latlej1 ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑃𝐵 ) → 𝑋 ( 𝑋 𝑃 ) )
27 6 7 18 26 syl3anc ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑋𝐵 ) ) → 𝑋 ( 𝑋 𝑃 ) )
28 27 3adant3 ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑋𝐵 ) ∧ ¬ 𝑃 𝑋 ) → 𝑋 ( 𝑋 𝑃 ) )
29 28 adantr ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑋𝐵 ) ∧ ¬ 𝑃 𝑋 ) ∧ 𝑃 ( 𝑋 𝑄 ) ) → 𝑋 ( 𝑋 𝑃 ) )
30 1 2 3 4 cvlexch1 ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑋𝐵 ) ∧ ¬ 𝑃 𝑋 ) → ( 𝑃 ( 𝑋 𝑄 ) → 𝑄 ( 𝑋 𝑃 ) ) )
31 30 imp ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑋𝐵 ) ∧ ¬ 𝑃 𝑋 ) ∧ 𝑃 ( 𝑋 𝑄 ) ) → 𝑄 ( 𝑋 𝑃 ) )
32 1 3 latjcl ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑃𝐵 ) → ( 𝑋 𝑃 ) ∈ 𝐵 )
33 6 7 18 32 syl3anc ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑋𝐵 ) ) → ( 𝑋 𝑃 ) ∈ 𝐵 )
34 1 2 3 latjle12 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑄𝐵 ∧ ( 𝑋 𝑃 ) ∈ 𝐵 ) ) → ( ( 𝑋 ( 𝑋 𝑃 ) ∧ 𝑄 ( 𝑋 𝑃 ) ) ↔ ( 𝑋 𝑄 ) ( 𝑋 𝑃 ) ) )
35 6 7 10 33 34 syl13anc ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑋𝐵 ) ) → ( ( 𝑋 ( 𝑋 𝑃 ) ∧ 𝑄 ( 𝑋 𝑃 ) ) ↔ ( 𝑋 𝑄 ) ( 𝑋 𝑃 ) ) )
36 35 3adant3 ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑋𝐵 ) ∧ ¬ 𝑃 𝑋 ) → ( ( 𝑋 ( 𝑋 𝑃 ) ∧ 𝑄 ( 𝑋 𝑃 ) ) ↔ ( 𝑋 𝑄 ) ( 𝑋 𝑃 ) ) )
37 36 adantr ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑋𝐵 ) ∧ ¬ 𝑃 𝑋 ) ∧ 𝑃 ( 𝑋 𝑄 ) ) → ( ( 𝑋 ( 𝑋 𝑃 ) ∧ 𝑄 ( 𝑋 𝑃 ) ) ↔ ( 𝑋 𝑄 ) ( 𝑋 𝑃 ) ) )
38 29 31 37 mpbi2and ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑋𝐵 ) ∧ ¬ 𝑃 𝑋 ) ∧ 𝑃 ( 𝑋 𝑄 ) ) → ( 𝑋 𝑄 ) ( 𝑋 𝑃 ) )
39 1 2 latasymb ( ( 𝐾 ∈ Lat ∧ ( 𝑋 𝑃 ) ∈ 𝐵 ∧ ( 𝑋 𝑄 ) ∈ 𝐵 ) → ( ( ( 𝑋 𝑃 ) ( 𝑋 𝑄 ) ∧ ( 𝑋 𝑄 ) ( 𝑋 𝑃 ) ) ↔ ( 𝑋 𝑃 ) = ( 𝑋 𝑄 ) ) )
40 6 33 20 39 syl3anc ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑋𝐵 ) ) → ( ( ( 𝑋 𝑃 ) ( 𝑋 𝑄 ) ∧ ( 𝑋 𝑄 ) ( 𝑋 𝑃 ) ) ↔ ( 𝑋 𝑃 ) = ( 𝑋 𝑄 ) ) )
41 40 3adant3 ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑋𝐵 ) ∧ ¬ 𝑃 𝑋 ) → ( ( ( 𝑋 𝑃 ) ( 𝑋 𝑄 ) ∧ ( 𝑋 𝑄 ) ( 𝑋 𝑃 ) ) ↔ ( 𝑋 𝑃 ) = ( 𝑋 𝑄 ) ) )
42 41 adantr ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑋𝐵 ) ∧ ¬ 𝑃 𝑋 ) ∧ 𝑃 ( 𝑋 𝑄 ) ) → ( ( ( 𝑋 𝑃 ) ( 𝑋 𝑄 ) ∧ ( 𝑋 𝑄 ) ( 𝑋 𝑃 ) ) ↔ ( 𝑋 𝑃 ) = ( 𝑋 𝑄 ) ) )
43 25 38 42 mpbi2and ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑋𝐵 ) ∧ ¬ 𝑃 𝑋 ) ∧ 𝑃 ( 𝑋 𝑄 ) ) → ( 𝑋 𝑃 ) = ( 𝑋 𝑄 ) )
44 43 ex ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑋𝐵 ) ∧ ¬ 𝑃 𝑋 ) → ( 𝑃 ( 𝑋 𝑄 ) → ( 𝑋 𝑃 ) = ( 𝑋 𝑄 ) ) )
45 1 2 3 latlej2 ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑃𝐵 ) → 𝑃 ( 𝑋 𝑃 ) )
46 6 7 18 45 syl3anc ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑋𝐵 ) ) → 𝑃 ( 𝑋 𝑃 ) )
47 breq2 ( ( 𝑋 𝑃 ) = ( 𝑋 𝑄 ) → ( 𝑃 ( 𝑋 𝑃 ) ↔ 𝑃 ( 𝑋 𝑄 ) ) )
48 46 47 syl5ibcom ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑋𝐵 ) ) → ( ( 𝑋 𝑃 ) = ( 𝑋 𝑄 ) → 𝑃 ( 𝑋 𝑄 ) ) )
49 48 3adant3 ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑋𝐵 ) ∧ ¬ 𝑃 𝑋 ) → ( ( 𝑋 𝑃 ) = ( 𝑋 𝑄 ) → 𝑃 ( 𝑋 𝑄 ) ) )
50 44 49 impbid ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑋𝐵 ) ∧ ¬ 𝑃 𝑋 ) → ( 𝑃 ( 𝑋 𝑄 ) ↔ ( 𝑋 𝑃 ) = ( 𝑋 𝑄 ) ) )