| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvrval4.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | cvrval4.s | ⊢  <   =  ( lt ‘ 𝐾 ) | 
						
							| 3 |  | cvrval4.j | ⊢  ∨   =  ( join ‘ 𝐾 ) | 
						
							| 4 |  | cvrval4.c | ⊢ 𝐶  =  (  ⋖  ‘ 𝐾 ) | 
						
							| 5 |  | cvrval4.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 6 | 1 2 4 | cvrlt | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋 𝐶 𝑌 )  →  𝑋  <  𝑌 ) | 
						
							| 7 |  | eqid | ⊢ ( le ‘ 𝐾 )  =  ( le ‘ 𝐾 ) | 
						
							| 8 | 1 7 3 4 5 | cvrval3 | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋 𝐶 𝑌  ↔  ∃ 𝑝  ∈  𝐴 ( ¬  𝑝 ( le ‘ 𝐾 ) 𝑋  ∧  ( 𝑋  ∨  𝑝 )  =  𝑌 ) ) ) | 
						
							| 9 |  | simpr | ⊢ ( ( ¬  𝑝 ( le ‘ 𝐾 ) 𝑋  ∧  ( 𝑋  ∨  𝑝 )  =  𝑌 )  →  ( 𝑋  ∨  𝑝 )  =  𝑌 ) | 
						
							| 10 | 9 | reximi | ⊢ ( ∃ 𝑝  ∈  𝐴 ( ¬  𝑝 ( le ‘ 𝐾 ) 𝑋  ∧  ( 𝑋  ∨  𝑝 )  =  𝑌 )  →  ∃ 𝑝  ∈  𝐴 ( 𝑋  ∨  𝑝 )  =  𝑌 ) | 
						
							| 11 | 8 10 | biimtrdi | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋 𝐶 𝑌  →  ∃ 𝑝  ∈  𝐴 ( 𝑋  ∨  𝑝 )  =  𝑌 ) ) | 
						
							| 12 | 11 | imp | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋 𝐶 𝑌 )  →  ∃ 𝑝  ∈  𝐴 ( 𝑋  ∨  𝑝 )  =  𝑌 ) | 
						
							| 13 | 6 12 | jca | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋 𝐶 𝑌 )  →  ( 𝑋  <  𝑌  ∧  ∃ 𝑝  ∈  𝐴 ( 𝑋  ∨  𝑝 )  =  𝑌 ) ) | 
						
							| 14 | 13 | ex | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋 𝐶 𝑌  →  ( 𝑋  <  𝑌  ∧  ∃ 𝑝  ∈  𝐴 ( 𝑋  ∨  𝑝 )  =  𝑌 ) ) ) | 
						
							| 15 |  | simp1r | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  ∧  𝑝  ∈  𝐴  ∧  ( 𝑋  ∨  𝑝 )  =  𝑌 )  →  𝑋  <  𝑌 ) | 
						
							| 16 |  | simp3 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  ∧  𝑝  ∈  𝐴  ∧  ( 𝑋  ∨  𝑝 )  =  𝑌 )  →  ( 𝑋  ∨  𝑝 )  =  𝑌 ) | 
						
							| 17 | 15 16 | breqtrrd | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  ∧  𝑝  ∈  𝐴  ∧  ( 𝑋  ∨  𝑝 )  =  𝑌 )  →  𝑋  <  ( 𝑋  ∨  𝑝 ) ) | 
						
							| 18 |  | simp1l1 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  ∧  𝑝  ∈  𝐴  ∧  ( 𝑋  ∨  𝑝 )  =  𝑌 )  →  𝐾  ∈  HL ) | 
						
							| 19 |  | simp1l2 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  ∧  𝑝  ∈  𝐴  ∧  ( 𝑋  ∨  𝑝 )  =  𝑌 )  →  𝑋  ∈  𝐵 ) | 
						
							| 20 |  | simp2 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  ∧  𝑝  ∈  𝐴  ∧  ( 𝑋  ∨  𝑝 )  =  𝑌 )  →  𝑝  ∈  𝐴 ) | 
						
							| 21 | 1 7 3 4 5 | cvr1 | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑝  ∈  𝐴 )  →  ( ¬  𝑝 ( le ‘ 𝐾 ) 𝑋  ↔  𝑋 𝐶 ( 𝑋  ∨  𝑝 ) ) ) | 
						
							| 22 | 18 19 20 21 | syl3anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  ∧  𝑝  ∈  𝐴  ∧  ( 𝑋  ∨  𝑝 )  =  𝑌 )  →  ( ¬  𝑝 ( le ‘ 𝐾 ) 𝑋  ↔  𝑋 𝐶 ( 𝑋  ∨  𝑝 ) ) ) | 
						
							| 23 | 1 2 3 4 5 | cvr2N | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑝  ∈  𝐴 )  →  ( 𝑋  <  ( 𝑋  ∨  𝑝 )  ↔  𝑋 𝐶 ( 𝑋  ∨  𝑝 ) ) ) | 
						
							| 24 | 18 19 20 23 | syl3anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  ∧  𝑝  ∈  𝐴  ∧  ( 𝑋  ∨  𝑝 )  =  𝑌 )  →  ( 𝑋  <  ( 𝑋  ∨  𝑝 )  ↔  𝑋 𝐶 ( 𝑋  ∨  𝑝 ) ) ) | 
						
							| 25 | 22 24 | bitr4d | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  ∧  𝑝  ∈  𝐴  ∧  ( 𝑋  ∨  𝑝 )  =  𝑌 )  →  ( ¬  𝑝 ( le ‘ 𝐾 ) 𝑋  ↔  𝑋  <  ( 𝑋  ∨  𝑝 ) ) ) | 
						
							| 26 | 17 25 | mpbird | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  ∧  𝑝  ∈  𝐴  ∧  ( 𝑋  ∨  𝑝 )  =  𝑌 )  →  ¬  𝑝 ( le ‘ 𝐾 ) 𝑋 ) | 
						
							| 27 | 26 16 | jca | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  ∧  𝑝  ∈  𝐴  ∧  ( 𝑋  ∨  𝑝 )  =  𝑌 )  →  ( ¬  𝑝 ( le ‘ 𝐾 ) 𝑋  ∧  ( 𝑋  ∨  𝑝 )  =  𝑌 ) ) | 
						
							| 28 | 27 | 3exp | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  →  ( 𝑝  ∈  𝐴  →  ( ( 𝑋  ∨  𝑝 )  =  𝑌  →  ( ¬  𝑝 ( le ‘ 𝐾 ) 𝑋  ∧  ( 𝑋  ∨  𝑝 )  =  𝑌 ) ) ) ) | 
						
							| 29 | 28 | reximdvai | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  →  ( ∃ 𝑝  ∈  𝐴 ( 𝑋  ∨  𝑝 )  =  𝑌  →  ∃ 𝑝  ∈  𝐴 ( ¬  𝑝 ( le ‘ 𝐾 ) 𝑋  ∧  ( 𝑋  ∨  𝑝 )  =  𝑌 ) ) ) | 
						
							| 30 | 29 | expimpd | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( 𝑋  <  𝑌  ∧  ∃ 𝑝  ∈  𝐴 ( 𝑋  ∨  𝑝 )  =  𝑌 )  →  ∃ 𝑝  ∈  𝐴 ( ¬  𝑝 ( le ‘ 𝐾 ) 𝑋  ∧  ( 𝑋  ∨  𝑝 )  =  𝑌 ) ) ) | 
						
							| 31 | 30 8 | sylibrd | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( 𝑋  <  𝑌  ∧  ∃ 𝑝  ∈  𝐴 ( 𝑋  ∨  𝑝 )  =  𝑌 )  →  𝑋 𝐶 𝑌 ) ) | 
						
							| 32 | 14 31 | impbid | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋 𝐶 𝑌  ↔  ( 𝑋  <  𝑌  ∧  ∃ 𝑝  ∈  𝐴 ( 𝑋  ∨  𝑝 )  =  𝑌 ) ) ) |