| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvrval5.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
cvrval5.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 3 |
|
cvrval5.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 4 |
|
cvrval5.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 5 |
|
cvrval5.c |
⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) |
| 6 |
|
cvrval5.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 7 |
|
simp1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ HL ) |
| 8 |
|
hllat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) |
| 9 |
1 4
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) |
| 10 |
8 9
|
syl3an1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) |
| 11 |
|
simp2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
| 12 |
1 2 3 5 6
|
cvrval3 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑋 ∧ 𝑌 ) 𝐶 𝑋 ↔ ∃ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ ( 𝑋 ∧ 𝑌 ) ∧ ( ( 𝑋 ∧ 𝑌 ) ∨ 𝑝 ) = 𝑋 ) ) ) |
| 13 |
7 10 11 12
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ∧ 𝑌 ) 𝐶 𝑋 ↔ ∃ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ ( 𝑋 ∧ 𝑌 ) ∧ ( ( 𝑋 ∧ 𝑌 ) ∨ 𝑝 ) = 𝑋 ) ) ) |
| 14 |
8
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ Lat ) |
| 15 |
14
|
ad2antrr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) ∧ ( ( 𝑋 ∧ 𝑌 ) ∨ 𝑝 ) = 𝑋 ) → 𝐾 ∈ Lat ) |
| 16 |
10
|
ad2antrr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) ∧ ( ( 𝑋 ∧ 𝑌 ) ∨ 𝑝 ) = 𝑋 ) → ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) |
| 17 |
1 6
|
atbase |
⊢ ( 𝑝 ∈ 𝐴 → 𝑝 ∈ 𝐵 ) |
| 18 |
17
|
ad2antlr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) ∧ ( ( 𝑋 ∧ 𝑌 ) ∨ 𝑝 ) = 𝑋 ) → 𝑝 ∈ 𝐵 ) |
| 19 |
1 2 3
|
latlej2 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ∧ 𝑝 ∈ 𝐵 ) → 𝑝 ≤ ( ( 𝑋 ∧ 𝑌 ) ∨ 𝑝 ) ) |
| 20 |
15 16 18 19
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) ∧ ( ( 𝑋 ∧ 𝑌 ) ∨ 𝑝 ) = 𝑋 ) → 𝑝 ≤ ( ( 𝑋 ∧ 𝑌 ) ∨ 𝑝 ) ) |
| 21 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) ∧ ( ( 𝑋 ∧ 𝑌 ) ∨ 𝑝 ) = 𝑋 ) → ( ( 𝑋 ∧ 𝑌 ) ∨ 𝑝 ) = 𝑋 ) |
| 22 |
20 21
|
breqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) ∧ ( ( 𝑋 ∧ 𝑌 ) ∨ 𝑝 ) = 𝑋 ) → 𝑝 ≤ 𝑋 ) |
| 23 |
22
|
biantrurd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) ∧ ( ( 𝑋 ∧ 𝑌 ) ∨ 𝑝 ) = 𝑋 ) → ( 𝑝 ≤ 𝑌 ↔ ( 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌 ) ) ) |
| 24 |
|
simpll2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) ∧ ( ( 𝑋 ∧ 𝑌 ) ∨ 𝑝 ) = 𝑋 ) → 𝑋 ∈ 𝐵 ) |
| 25 |
|
simpll3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) ∧ ( ( 𝑋 ∧ 𝑌 ) ∨ 𝑝 ) = 𝑋 ) → 𝑌 ∈ 𝐵 ) |
| 26 |
1 2 4
|
latlem12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌 ) ↔ 𝑝 ≤ ( 𝑋 ∧ 𝑌 ) ) ) |
| 27 |
15 18 24 25 26
|
syl13anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) ∧ ( ( 𝑋 ∧ 𝑌 ) ∨ 𝑝 ) = 𝑋 ) → ( ( 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌 ) ↔ 𝑝 ≤ ( 𝑋 ∧ 𝑌 ) ) ) |
| 28 |
23 27
|
bitr2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) ∧ ( ( 𝑋 ∧ 𝑌 ) ∨ 𝑝 ) = 𝑋 ) → ( 𝑝 ≤ ( 𝑋 ∧ 𝑌 ) ↔ 𝑝 ≤ 𝑌 ) ) |
| 29 |
28
|
notbid |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) ∧ ( ( 𝑋 ∧ 𝑌 ) ∨ 𝑝 ) = 𝑋 ) → ( ¬ 𝑝 ≤ ( 𝑋 ∧ 𝑌 ) ↔ ¬ 𝑝 ≤ 𝑌 ) ) |
| 30 |
29
|
ex |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → ( ( ( 𝑋 ∧ 𝑌 ) ∨ 𝑝 ) = 𝑋 → ( ¬ 𝑝 ≤ ( 𝑋 ∧ 𝑌 ) ↔ ¬ 𝑝 ≤ 𝑌 ) ) ) |
| 31 |
30
|
pm5.32rd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → ( ( ¬ 𝑝 ≤ ( 𝑋 ∧ 𝑌 ) ∧ ( ( 𝑋 ∧ 𝑌 ) ∨ 𝑝 ) = 𝑋 ) ↔ ( ¬ 𝑝 ≤ 𝑌 ∧ ( ( 𝑋 ∧ 𝑌 ) ∨ 𝑝 ) = 𝑋 ) ) ) |
| 32 |
14
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → 𝐾 ∈ Lat ) |
| 33 |
10
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) |
| 34 |
17
|
adantl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → 𝑝 ∈ 𝐵 ) |
| 35 |
1 3
|
latjcom |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ∧ 𝑝 ∈ 𝐵 ) → ( ( 𝑋 ∧ 𝑌 ) ∨ 𝑝 ) = ( 𝑝 ∨ ( 𝑋 ∧ 𝑌 ) ) ) |
| 36 |
32 33 34 35
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → ( ( 𝑋 ∧ 𝑌 ) ∨ 𝑝 ) = ( 𝑝 ∨ ( 𝑋 ∧ 𝑌 ) ) ) |
| 37 |
36
|
eqeq1d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → ( ( ( 𝑋 ∧ 𝑌 ) ∨ 𝑝 ) = 𝑋 ↔ ( 𝑝 ∨ ( 𝑋 ∧ 𝑌 ) ) = 𝑋 ) ) |
| 38 |
37
|
anbi2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → ( ( ¬ 𝑝 ≤ 𝑌 ∧ ( ( 𝑋 ∧ 𝑌 ) ∨ 𝑝 ) = 𝑋 ) ↔ ( ¬ 𝑝 ≤ 𝑌 ∧ ( 𝑝 ∨ ( 𝑋 ∧ 𝑌 ) ) = 𝑋 ) ) ) |
| 39 |
31 38
|
bitrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → ( ( ¬ 𝑝 ≤ ( 𝑋 ∧ 𝑌 ) ∧ ( ( 𝑋 ∧ 𝑌 ) ∨ 𝑝 ) = 𝑋 ) ↔ ( ¬ 𝑝 ≤ 𝑌 ∧ ( 𝑝 ∨ ( 𝑋 ∧ 𝑌 ) ) = 𝑋 ) ) ) |
| 40 |
39
|
rexbidva |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ∃ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ ( 𝑋 ∧ 𝑌 ) ∧ ( ( 𝑋 ∧ 𝑌 ) ∨ 𝑝 ) = 𝑋 ) ↔ ∃ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑌 ∧ ( 𝑝 ∨ ( 𝑋 ∧ 𝑌 ) ) = 𝑋 ) ) ) |
| 41 |
13 40
|
bitrd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ∧ 𝑌 ) 𝐶 𝑋 ↔ ∃ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑌 ∧ ( 𝑝 ∨ ( 𝑋 ∧ 𝑌 ) ) = 𝑋 ) ) ) |