Metamath Proof Explorer


Theorem dchrvmaeq0

Description: The set W is the collection of all non-principal Dirichlet characters such that the sum sum_ n e. NN , X ( n ) / n is equal to zero. (Contributed by Mario Carneiro, 5-May-2016)

Ref Expression
Hypotheses rpvmasum.z 𝑍 = ( ℤ/nℤ ‘ 𝑁 )
rpvmasum.l 𝐿 = ( ℤRHom ‘ 𝑍 )
rpvmasum.a ( 𝜑𝑁 ∈ ℕ )
rpvmasum.g 𝐺 = ( DChr ‘ 𝑁 )
rpvmasum.d 𝐷 = ( Base ‘ 𝐺 )
rpvmasum.1 1 = ( 0g𝐺 )
dchrisum.b ( 𝜑𝑋𝐷 )
dchrisum.n1 ( 𝜑𝑋1 )
dchrvmasumif.f 𝐹 = ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿𝑎 ) ) / 𝑎 ) )
dchrvmasumif.c ( 𝜑𝐶 ∈ ( 0 [,) +∞ ) )
dchrvmasumif.s ( 𝜑 → seq 1 ( + , 𝐹 ) ⇝ 𝑆 )
dchrvmasumif.1 ( 𝜑 → ∀ 𝑦 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑆 ) ) ≤ ( 𝐶 / 𝑦 ) )
dchrvmaeq0.w 𝑊 = { 𝑦 ∈ ( 𝐷 ∖ { 1 } ) ∣ Σ 𝑚 ∈ ℕ ( ( 𝑦 ‘ ( 𝐿𝑚 ) ) / 𝑚 ) = 0 }
Assertion dchrvmaeq0 ( 𝜑 → ( 𝑋𝑊𝑆 = 0 ) )

Proof

Step Hyp Ref Expression
1 rpvmasum.z 𝑍 = ( ℤ/nℤ ‘ 𝑁 )
2 rpvmasum.l 𝐿 = ( ℤRHom ‘ 𝑍 )
3 rpvmasum.a ( 𝜑𝑁 ∈ ℕ )
4 rpvmasum.g 𝐺 = ( DChr ‘ 𝑁 )
5 rpvmasum.d 𝐷 = ( Base ‘ 𝐺 )
6 rpvmasum.1 1 = ( 0g𝐺 )
7 dchrisum.b ( 𝜑𝑋𝐷 )
8 dchrisum.n1 ( 𝜑𝑋1 )
9 dchrvmasumif.f 𝐹 = ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿𝑎 ) ) / 𝑎 ) )
10 dchrvmasumif.c ( 𝜑𝐶 ∈ ( 0 [,) +∞ ) )
11 dchrvmasumif.s ( 𝜑 → seq 1 ( + , 𝐹 ) ⇝ 𝑆 )
12 dchrvmasumif.1 ( 𝜑 → ∀ 𝑦 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑆 ) ) ≤ ( 𝐶 / 𝑦 ) )
13 dchrvmaeq0.w 𝑊 = { 𝑦 ∈ ( 𝐷 ∖ { 1 } ) ∣ Σ 𝑚 ∈ ℕ ( ( 𝑦 ‘ ( 𝐿𝑚 ) ) / 𝑚 ) = 0 }
14 eldifsn ( 𝑋 ∈ ( 𝐷 ∖ { 1 } ) ↔ ( 𝑋𝐷𝑋1 ) )
15 7 8 14 sylanbrc ( 𝜑𝑋 ∈ ( 𝐷 ∖ { 1 } ) )
16 fveq1 ( 𝑦 = 𝑋 → ( 𝑦 ‘ ( 𝐿𝑚 ) ) = ( 𝑋 ‘ ( 𝐿𝑚 ) ) )
17 16 oveq1d ( 𝑦 = 𝑋 → ( ( 𝑦 ‘ ( 𝐿𝑚 ) ) / 𝑚 ) = ( ( 𝑋 ‘ ( 𝐿𝑚 ) ) / 𝑚 ) )
18 17 sumeq2sdv ( 𝑦 = 𝑋 → Σ 𝑚 ∈ ℕ ( ( 𝑦 ‘ ( 𝐿𝑚 ) ) / 𝑚 ) = Σ 𝑚 ∈ ℕ ( ( 𝑋 ‘ ( 𝐿𝑚 ) ) / 𝑚 ) )
19 18 eqeq1d ( 𝑦 = 𝑋 → ( Σ 𝑚 ∈ ℕ ( ( 𝑦 ‘ ( 𝐿𝑚 ) ) / 𝑚 ) = 0 ↔ Σ 𝑚 ∈ ℕ ( ( 𝑋 ‘ ( 𝐿𝑚 ) ) / 𝑚 ) = 0 ) )
20 19 13 elrab2 ( 𝑋𝑊 ↔ ( 𝑋 ∈ ( 𝐷 ∖ { 1 } ) ∧ Σ 𝑚 ∈ ℕ ( ( 𝑋 ‘ ( 𝐿𝑚 ) ) / 𝑚 ) = 0 ) )
21 20 baib ( 𝑋 ∈ ( 𝐷 ∖ { 1 } ) → ( 𝑋𝑊 ↔ Σ 𝑚 ∈ ℕ ( ( 𝑋 ‘ ( 𝐿𝑚 ) ) / 𝑚 ) = 0 ) )
22 15 21 syl ( 𝜑 → ( 𝑋𝑊 ↔ Σ 𝑚 ∈ ℕ ( ( 𝑋 ‘ ( 𝐿𝑚 ) ) / 𝑚 ) = 0 ) )
23 nnuz ℕ = ( ℤ ‘ 1 )
24 1zzd ( 𝜑 → 1 ∈ ℤ )
25 2fveq3 ( 𝑎 = 𝑚 → ( 𝑋 ‘ ( 𝐿𝑎 ) ) = ( 𝑋 ‘ ( 𝐿𝑚 ) ) )
26 id ( 𝑎 = 𝑚𝑎 = 𝑚 )
27 25 26 oveq12d ( 𝑎 = 𝑚 → ( ( 𝑋 ‘ ( 𝐿𝑎 ) ) / 𝑎 ) = ( ( 𝑋 ‘ ( 𝐿𝑚 ) ) / 𝑚 ) )
28 ovex ( ( 𝑋 ‘ ( 𝐿𝑚 ) ) / 𝑚 ) ∈ V
29 27 9 28 fvmpt ( 𝑚 ∈ ℕ → ( 𝐹𝑚 ) = ( ( 𝑋 ‘ ( 𝐿𝑚 ) ) / 𝑚 ) )
30 29 adantl ( ( 𝜑𝑚 ∈ ℕ ) → ( 𝐹𝑚 ) = ( ( 𝑋 ‘ ( 𝐿𝑚 ) ) / 𝑚 ) )
31 7 adantr ( ( 𝜑𝑚 ∈ ℕ ) → 𝑋𝐷 )
32 nnz ( 𝑚 ∈ ℕ → 𝑚 ∈ ℤ )
33 32 adantl ( ( 𝜑𝑚 ∈ ℕ ) → 𝑚 ∈ ℤ )
34 4 1 5 2 31 33 dchrzrhcl ( ( 𝜑𝑚 ∈ ℕ ) → ( 𝑋 ‘ ( 𝐿𝑚 ) ) ∈ ℂ )
35 nncn ( 𝑚 ∈ ℕ → 𝑚 ∈ ℂ )
36 35 adantl ( ( 𝜑𝑚 ∈ ℕ ) → 𝑚 ∈ ℂ )
37 nnne0 ( 𝑚 ∈ ℕ → 𝑚 ≠ 0 )
38 37 adantl ( ( 𝜑𝑚 ∈ ℕ ) → 𝑚 ≠ 0 )
39 34 36 38 divcld ( ( 𝜑𝑚 ∈ ℕ ) → ( ( 𝑋 ‘ ( 𝐿𝑚 ) ) / 𝑚 ) ∈ ℂ )
40 23 24 30 39 11 isumclim ( 𝜑 → Σ 𝑚 ∈ ℕ ( ( 𝑋 ‘ ( 𝐿𝑚 ) ) / 𝑚 ) = 𝑆 )
41 40 eqeq1d ( 𝜑 → ( Σ 𝑚 ∈ ℕ ( ( 𝑋 ‘ ( 𝐿𝑚 ) ) / 𝑚 ) = 0 ↔ 𝑆 = 0 ) )
42 22 41 bitrd ( 𝜑 → ( 𝑋𝑊𝑆 = 0 ) )