Metamath Proof Explorer


Theorem diainN

Description: Inverse partial isomorphism A of an intersection. (Contributed by NM, 6-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses diam.m = ( meet ‘ 𝐾 )
diam.h 𝐻 = ( LHyp ‘ 𝐾 )
diam.i 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 )
Assertion diainN ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼 ) ) → ( 𝑋𝑌 ) = ( 𝐼 ‘ ( ( 𝐼𝑋 ) ( 𝐼𝑌 ) ) ) )

Proof

Step Hyp Ref Expression
1 diam.m = ( meet ‘ 𝐾 )
2 diam.h 𝐻 = ( LHyp ‘ 𝐾 )
3 diam.i 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 )
4 simpl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
5 2 3 diacnvclN ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( 𝐼𝑋 ) ∈ dom 𝐼 )
6 5 adantrr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼 ) ) → ( 𝐼𝑋 ) ∈ dom 𝐼 )
7 2 3 diacnvclN ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑌 ∈ ran 𝐼 ) → ( 𝐼𝑌 ) ∈ dom 𝐼 )
8 7 adantrl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼 ) ) → ( 𝐼𝑌 ) ∈ dom 𝐼 )
9 1 2 3 diameetN ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝐼𝑋 ) ∈ dom 𝐼 ∧ ( 𝐼𝑌 ) ∈ dom 𝐼 ) ) → ( 𝐼 ‘ ( ( 𝐼𝑋 ) ( 𝐼𝑌 ) ) ) = ( ( 𝐼 ‘ ( 𝐼𝑋 ) ) ∩ ( 𝐼 ‘ ( 𝐼𝑌 ) ) ) )
10 4 6 8 9 syl12anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼 ) ) → ( 𝐼 ‘ ( ( 𝐼𝑋 ) ( 𝐼𝑌 ) ) ) = ( ( 𝐼 ‘ ( 𝐼𝑋 ) ) ∩ ( 𝐼 ‘ ( 𝐼𝑌 ) ) ) )
11 2 3 diaf11N ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝐼 : dom 𝐼1-1-onto→ ran 𝐼 )
12 11 adantr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼 ) ) → 𝐼 : dom 𝐼1-1-onto→ ran 𝐼 )
13 simprl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼 ) ) → 𝑋 ∈ ran 𝐼 )
14 f1ocnvfv2 ( ( 𝐼 : dom 𝐼1-1-onto→ ran 𝐼𝑋 ∈ ran 𝐼 ) → ( 𝐼 ‘ ( 𝐼𝑋 ) ) = 𝑋 )
15 12 13 14 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼 ) ) → ( 𝐼 ‘ ( 𝐼𝑋 ) ) = 𝑋 )
16 simprr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼 ) ) → 𝑌 ∈ ran 𝐼 )
17 f1ocnvfv2 ( ( 𝐼 : dom 𝐼1-1-onto→ ran 𝐼𝑌 ∈ ran 𝐼 ) → ( 𝐼 ‘ ( 𝐼𝑌 ) ) = 𝑌 )
18 12 16 17 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼 ) ) → ( 𝐼 ‘ ( 𝐼𝑌 ) ) = 𝑌 )
19 15 18 ineq12d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼 ) ) → ( ( 𝐼 ‘ ( 𝐼𝑋 ) ) ∩ ( 𝐼 ‘ ( 𝐼𝑌 ) ) ) = ( 𝑋𝑌 ) )
20 10 19 eqtr2d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼 ) ) → ( 𝑋𝑌 ) = ( 𝐼 ‘ ( ( 𝐼𝑋 ) ( 𝐼𝑌 ) ) ) )