Metamath Proof Explorer


Theorem diainN

Description: Inverse partial isomorphism A of an intersection. (Contributed by NM, 6-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses diam.m ˙ = meet K
diam.h H = LHyp K
diam.i I = DIsoA K W
Assertion diainN K HL W H X ran I Y ran I X Y = I I -1 X ˙ I -1 Y

Proof

Step Hyp Ref Expression
1 diam.m ˙ = meet K
2 diam.h H = LHyp K
3 diam.i I = DIsoA K W
4 simpl K HL W H X ran I Y ran I K HL W H
5 2 3 diacnvclN K HL W H X ran I I -1 X dom I
6 5 adantrr K HL W H X ran I Y ran I I -1 X dom I
7 2 3 diacnvclN K HL W H Y ran I I -1 Y dom I
8 7 adantrl K HL W H X ran I Y ran I I -1 Y dom I
9 1 2 3 diameetN K HL W H I -1 X dom I I -1 Y dom I I I -1 X ˙ I -1 Y = I I -1 X I I -1 Y
10 4 6 8 9 syl12anc K HL W H X ran I Y ran I I I -1 X ˙ I -1 Y = I I -1 X I I -1 Y
11 2 3 diaf11N K HL W H I : dom I 1-1 onto ran I
12 11 adantr K HL W H X ran I Y ran I I : dom I 1-1 onto ran I
13 simprl K HL W H X ran I Y ran I X ran I
14 f1ocnvfv2 I : dom I 1-1 onto ran I X ran I I I -1 X = X
15 12 13 14 syl2anc K HL W H X ran I Y ran I I I -1 X = X
16 simprr K HL W H X ran I Y ran I Y ran I
17 f1ocnvfv2 I : dom I 1-1 onto ran I Y ran I I I -1 Y = Y
18 12 16 17 syl2anc K HL W H X ran I Y ran I I I -1 Y = Y
19 15 18 ineq12d K HL W H X ran I Y ran I I I -1 X I I -1 Y = X Y
20 10 19 eqtr2d K HL W H X ran I Y ran I X Y = I I -1 X ˙ I -1 Y