Step |
Hyp |
Ref |
Expression |
1 |
|
dihjatc1.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
dihjatc1.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
dihjatc1.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
4 |
|
dihjatc1.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
5 |
|
dihjatc1.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
6 |
|
dihjatc1.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
7 |
|
dihjatc1.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
dihjatc1.s |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
9 |
|
dihjatc1.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
10 |
|
simp11l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ≤ 𝑋 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → 𝐾 ∈ HL ) |
11 |
10
|
hllatd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ≤ 𝑋 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → 𝐾 ∈ Lat ) |
12 |
|
simp2l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ≤ 𝑋 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → 𝑄 ∈ 𝐴 ) |
13 |
1 6
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵 ) |
14 |
12 13
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ≤ 𝑋 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → 𝑄 ∈ 𝐵 ) |
15 |
|
simp12 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ≤ 𝑋 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → 𝑋 ∈ 𝐵 ) |
16 |
|
simp13 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ≤ 𝑋 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → 𝑌 ∈ 𝐵 ) |
17 |
1 5
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) |
18 |
11 15 16 17
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ≤ 𝑋 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) |
19 |
1 4
|
latjcom |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) → ( 𝑄 ∨ ( 𝑋 ∧ 𝑌 ) ) = ( ( 𝑋 ∧ 𝑌 ) ∨ 𝑄 ) ) |
20 |
11 14 18 19
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ≤ 𝑋 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → ( 𝑄 ∨ ( 𝑋 ∧ 𝑌 ) ) = ( ( 𝑋 ∧ 𝑌 ) ∨ 𝑄 ) ) |
21 |
20
|
fveq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ≤ 𝑋 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → ( 𝐼 ‘ ( 𝑄 ∨ ( 𝑋 ∧ 𝑌 ) ) ) = ( 𝐼 ‘ ( ( 𝑋 ∧ 𝑌 ) ∨ 𝑄 ) ) ) |
22 |
1 2 3 4 5 6 7 8 9
|
dihjatc1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ≤ 𝑋 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → ( 𝐼 ‘ ( ( 𝑋 ∧ 𝑌 ) ∨ 𝑄 ) ) = ( ( 𝐼 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ) ) |
23 |
21 22
|
eqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ≤ 𝑋 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → ( 𝐼 ‘ ( 𝑄 ∨ ( 𝑋 ∧ 𝑌 ) ) ) = ( ( 𝐼 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ) ) |