Metamath Proof Explorer


Theorem dihjatc2N

Description: Isomorphism H of join with an atom. (Contributed by NM, 26-Aug-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dihjatc1.b 𝐵 = ( Base ‘ 𝐾 )
dihjatc1.l = ( le ‘ 𝐾 )
dihjatc1.h 𝐻 = ( LHyp ‘ 𝐾 )
dihjatc1.j = ( join ‘ 𝐾 )
dihjatc1.m = ( meet ‘ 𝐾 )
dihjatc1.a 𝐴 = ( Atoms ‘ 𝐾 )
dihjatc1.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dihjatc1.s = ( LSSum ‘ 𝑈 )
dihjatc1.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
Assertion dihjatc2N ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑄 𝑋 ∧ ( 𝑋 𝑌 ) 𝑊 ) ) → ( 𝐼 ‘ ( 𝑄 ( 𝑋 𝑌 ) ) ) = ( ( 𝐼𝑄 ) ( 𝐼 ‘ ( 𝑋 𝑌 ) ) ) )

Proof

Step Hyp Ref Expression
1 dihjatc1.b 𝐵 = ( Base ‘ 𝐾 )
2 dihjatc1.l = ( le ‘ 𝐾 )
3 dihjatc1.h 𝐻 = ( LHyp ‘ 𝐾 )
4 dihjatc1.j = ( join ‘ 𝐾 )
5 dihjatc1.m = ( meet ‘ 𝐾 )
6 dihjatc1.a 𝐴 = ( Atoms ‘ 𝐾 )
7 dihjatc1.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
8 dihjatc1.s = ( LSSum ‘ 𝑈 )
9 dihjatc1.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
10 simp11l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑄 𝑋 ∧ ( 𝑋 𝑌 ) 𝑊 ) ) → 𝐾 ∈ HL )
11 10 hllatd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑄 𝑋 ∧ ( 𝑋 𝑌 ) 𝑊 ) ) → 𝐾 ∈ Lat )
12 simp2l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑄 𝑋 ∧ ( 𝑋 𝑌 ) 𝑊 ) ) → 𝑄𝐴 )
13 1 6 atbase ( 𝑄𝐴𝑄𝐵 )
14 12 13 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑄 𝑋 ∧ ( 𝑋 𝑌 ) 𝑊 ) ) → 𝑄𝐵 )
15 simp12 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑄 𝑋 ∧ ( 𝑋 𝑌 ) 𝑊 ) ) → 𝑋𝐵 )
16 simp13 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑄 𝑋 ∧ ( 𝑋 𝑌 ) 𝑊 ) ) → 𝑌𝐵 )
17 1 5 latmcl ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 ) ∈ 𝐵 )
18 11 15 16 17 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑄 𝑋 ∧ ( 𝑋 𝑌 ) 𝑊 ) ) → ( 𝑋 𝑌 ) ∈ 𝐵 )
19 1 4 latjcom ( ( 𝐾 ∈ Lat ∧ 𝑄𝐵 ∧ ( 𝑋 𝑌 ) ∈ 𝐵 ) → ( 𝑄 ( 𝑋 𝑌 ) ) = ( ( 𝑋 𝑌 ) 𝑄 ) )
20 11 14 18 19 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑄 𝑋 ∧ ( 𝑋 𝑌 ) 𝑊 ) ) → ( 𝑄 ( 𝑋 𝑌 ) ) = ( ( 𝑋 𝑌 ) 𝑄 ) )
21 20 fveq2d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑄 𝑋 ∧ ( 𝑋 𝑌 ) 𝑊 ) ) → ( 𝐼 ‘ ( 𝑄 ( 𝑋 𝑌 ) ) ) = ( 𝐼 ‘ ( ( 𝑋 𝑌 ) 𝑄 ) ) )
22 1 2 3 4 5 6 7 8 9 dihjatc1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑄 𝑋 ∧ ( 𝑋 𝑌 ) 𝑊 ) ) → ( 𝐼 ‘ ( ( 𝑋 𝑌 ) 𝑄 ) ) = ( ( 𝐼𝑄 ) ( 𝐼 ‘ ( 𝑋 𝑌 ) ) ) )
23 21 22 eqtrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑄 𝑋 ∧ ( 𝑋 𝑌 ) 𝑊 ) ) → ( 𝐼 ‘ ( 𝑄 ( 𝑋 𝑌 ) ) ) = ( ( 𝐼𝑄 ) ( 𝐼 ‘ ( 𝑋 𝑌 ) ) ) )