| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dihmeetlem7.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
dihmeetlem7.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 3 |
|
dihmeetlem7.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 4 |
|
dihmeetlem7.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 5 |
|
dihmeetlem7.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 6 |
|
simprr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑌 ) ) → ¬ 𝑝 ≤ 𝑌 ) |
| 7 |
|
simpl1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑌 ) ) → 𝐾 ∈ HL ) |
| 8 |
|
hlatl |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ AtLat ) |
| 9 |
7 8
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑌 ) ) → 𝐾 ∈ AtLat ) |
| 10 |
|
simprl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑌 ) ) → 𝑝 ∈ 𝐴 ) |
| 11 |
|
simpl3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑌 ) ) → 𝑌 ∈ 𝐵 ) |
| 12 |
|
eqid |
⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) |
| 13 |
1 2 4 12 5
|
atnle |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑝 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( ¬ 𝑝 ≤ 𝑌 ↔ ( 𝑝 ∧ 𝑌 ) = ( 0. ‘ 𝐾 ) ) ) |
| 14 |
9 10 11 13
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑌 ) ) → ( ¬ 𝑝 ≤ 𝑌 ↔ ( 𝑝 ∧ 𝑌 ) = ( 0. ‘ 𝐾 ) ) ) |
| 15 |
6 14
|
mpbid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑌 ) ) → ( 𝑝 ∧ 𝑌 ) = ( 0. ‘ 𝐾 ) ) |
| 16 |
15
|
oveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑌 ) ) → ( ( 𝑋 ∧ 𝑌 ) ∨ ( 𝑝 ∧ 𝑌 ) ) = ( ( 𝑋 ∧ 𝑌 ) ∨ ( 0. ‘ 𝐾 ) ) ) |
| 17 |
7
|
hllatd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑌 ) ) → 𝐾 ∈ Lat ) |
| 18 |
|
simpl2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑌 ) ) → 𝑋 ∈ 𝐵 ) |
| 19 |
1 4
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) |
| 20 |
17 18 11 19
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑌 ) ) → ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) |
| 21 |
1 2 4
|
latmle2 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑌 ) ≤ 𝑌 ) |
| 22 |
17 18 11 21
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑌 ) ) → ( 𝑋 ∧ 𝑌 ) ≤ 𝑌 ) |
| 23 |
1 2 3 4 5
|
atmod1i2 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑝 ∈ 𝐴 ∧ ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑌 ) → ( ( 𝑋 ∧ 𝑌 ) ∨ ( 𝑝 ∧ 𝑌 ) ) = ( ( ( 𝑋 ∧ 𝑌 ) ∨ 𝑝 ) ∧ 𝑌 ) ) |
| 24 |
7 10 20 11 22 23
|
syl131anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑌 ) ) → ( ( 𝑋 ∧ 𝑌 ) ∨ ( 𝑝 ∧ 𝑌 ) ) = ( ( ( 𝑋 ∧ 𝑌 ) ∨ 𝑝 ) ∧ 𝑌 ) ) |
| 25 |
|
hlol |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OL ) |
| 26 |
7 25
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑌 ) ) → 𝐾 ∈ OL ) |
| 27 |
1 3 12
|
olj01 |
⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) → ( ( 𝑋 ∧ 𝑌 ) ∨ ( 0. ‘ 𝐾 ) ) = ( 𝑋 ∧ 𝑌 ) ) |
| 28 |
26 20 27
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑌 ) ) → ( ( 𝑋 ∧ 𝑌 ) ∨ ( 0. ‘ 𝐾 ) ) = ( 𝑋 ∧ 𝑌 ) ) |
| 29 |
16 24 28
|
3eqtr3d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑌 ) ) → ( ( ( 𝑋 ∧ 𝑌 ) ∨ 𝑝 ) ∧ 𝑌 ) = ( 𝑋 ∧ 𝑌 ) ) |