Metamath Proof Explorer


Theorem distrlem5pr

Description: Lemma for distributive law for positive reals. (Contributed by NM, 2-May-1996) (Revised by Mario Carneiro, 14-Jun-2013) (New usage is discouraged.)

Ref Expression
Assertion distrlem5pr ( ( 𝐴P𝐵P𝐶P ) → ( ( 𝐴 ·P 𝐵 ) +P ( 𝐴 ·P 𝐶 ) ) ⊆ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 mulclpr ( ( 𝐴P𝐵P ) → ( 𝐴 ·P 𝐵 ) ∈ P )
2 1 3adant3 ( ( 𝐴P𝐵P𝐶P ) → ( 𝐴 ·P 𝐵 ) ∈ P )
3 mulclpr ( ( 𝐴P𝐶P ) → ( 𝐴 ·P 𝐶 ) ∈ P )
4 df-plp +P = ( 𝑥P , 𝑦P ↦ { 𝑓 ∣ ∃ 𝑔𝑥𝑦 𝑓 = ( 𝑔 +Q ) } )
5 addclnq ( ( 𝑔QQ ) → ( 𝑔 +Q ) ∈ Q )
6 4 5 genpelv ( ( ( 𝐴 ·P 𝐵 ) ∈ P ∧ ( 𝐴 ·P 𝐶 ) ∈ P ) → ( 𝑤 ∈ ( ( 𝐴 ·P 𝐵 ) +P ( 𝐴 ·P 𝐶 ) ) ↔ ∃ 𝑣 ∈ ( 𝐴 ·P 𝐵 ) ∃ 𝑢 ∈ ( 𝐴 ·P 𝐶 ) 𝑤 = ( 𝑣 +Q 𝑢 ) ) )
7 2 3 6 3imp3i2an ( ( 𝐴P𝐵P𝐶P ) → ( 𝑤 ∈ ( ( 𝐴 ·P 𝐵 ) +P ( 𝐴 ·P 𝐶 ) ) ↔ ∃ 𝑣 ∈ ( 𝐴 ·P 𝐵 ) ∃ 𝑢 ∈ ( 𝐴 ·P 𝐶 ) 𝑤 = ( 𝑣 +Q 𝑢 ) ) )
8 df-mp ·P = ( 𝑤P , 𝑣P ↦ { 𝑥 ∣ ∃ 𝑔𝑤𝑣 𝑥 = ( 𝑔 ·Q ) } )
9 mulclnq ( ( 𝑔QQ ) → ( 𝑔 ·Q ) ∈ Q )
10 8 9 genpelv ( ( 𝐴P𝐶P ) → ( 𝑢 ∈ ( 𝐴 ·P 𝐶 ) ↔ ∃ 𝑓𝐴𝑧𝐶 𝑢 = ( 𝑓 ·Q 𝑧 ) ) )
11 10 3adant2 ( ( 𝐴P𝐵P𝐶P ) → ( 𝑢 ∈ ( 𝐴 ·P 𝐶 ) ↔ ∃ 𝑓𝐴𝑧𝐶 𝑢 = ( 𝑓 ·Q 𝑧 ) ) )
12 11 anbi2d ( ( 𝐴P𝐵P𝐶P ) → ( ( 𝑣 ∈ ( 𝐴 ·P 𝐵 ) ∧ 𝑢 ∈ ( 𝐴 ·P 𝐶 ) ) ↔ ( 𝑣 ∈ ( 𝐴 ·P 𝐵 ) ∧ ∃ 𝑓𝐴𝑧𝐶 𝑢 = ( 𝑓 ·Q 𝑧 ) ) ) )
13 df-mp ·P = ( 𝑤P , 𝑣P ↦ { 𝑓 ∣ ∃ 𝑔𝑤𝑣 𝑓 = ( 𝑔 ·Q ) } )
14 13 9 genpelv ( ( 𝐴P𝐵P ) → ( 𝑣 ∈ ( 𝐴 ·P 𝐵 ) ↔ ∃ 𝑥𝐴𝑦𝐵 𝑣 = ( 𝑥 ·Q 𝑦 ) ) )
15 14 3adant3 ( ( 𝐴P𝐵P𝐶P ) → ( 𝑣 ∈ ( 𝐴 ·P 𝐵 ) ↔ ∃ 𝑥𝐴𝑦𝐵 𝑣 = ( 𝑥 ·Q 𝑦 ) ) )
16 distrlem4pr ( ( ( 𝐴P𝐵P𝐶P ) ∧ ( ( 𝑥𝐴𝑦𝐵 ) ∧ ( 𝑓𝐴𝑧𝐶 ) ) ) → ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑓 ·Q 𝑧 ) ) ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) )
17 oveq12 ( ( 𝑣 = ( 𝑥 ·Q 𝑦 ) ∧ 𝑢 = ( 𝑓 ·Q 𝑧 ) ) → ( 𝑣 +Q 𝑢 ) = ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑓 ·Q 𝑧 ) ) )
18 17 eqeq2d ( ( 𝑣 = ( 𝑥 ·Q 𝑦 ) ∧ 𝑢 = ( 𝑓 ·Q 𝑧 ) ) → ( 𝑤 = ( 𝑣 +Q 𝑢 ) ↔ 𝑤 = ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑓 ·Q 𝑧 ) ) ) )
19 eleq1 ( 𝑤 = ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑓 ·Q 𝑧 ) ) → ( 𝑤 ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ↔ ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑓 ·Q 𝑧 ) ) ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) )
20 18 19 syl6bi ( ( 𝑣 = ( 𝑥 ·Q 𝑦 ) ∧ 𝑢 = ( 𝑓 ·Q 𝑧 ) ) → ( 𝑤 = ( 𝑣 +Q 𝑢 ) → ( 𝑤 ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ↔ ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑓 ·Q 𝑧 ) ) ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) ) )
21 20 imp ( ( ( 𝑣 = ( 𝑥 ·Q 𝑦 ) ∧ 𝑢 = ( 𝑓 ·Q 𝑧 ) ) ∧ 𝑤 = ( 𝑣 +Q 𝑢 ) ) → ( 𝑤 ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ↔ ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑓 ·Q 𝑧 ) ) ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) )
22 16 21 syl5ibrcom ( ( ( 𝐴P𝐵P𝐶P ) ∧ ( ( 𝑥𝐴𝑦𝐵 ) ∧ ( 𝑓𝐴𝑧𝐶 ) ) ) → ( ( ( 𝑣 = ( 𝑥 ·Q 𝑦 ) ∧ 𝑢 = ( 𝑓 ·Q 𝑧 ) ) ∧ 𝑤 = ( 𝑣 +Q 𝑢 ) ) → 𝑤 ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) )
23 22 exp4b ( ( 𝐴P𝐵P𝐶P ) → ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ ( 𝑓𝐴𝑧𝐶 ) ) → ( ( 𝑣 = ( 𝑥 ·Q 𝑦 ) ∧ 𝑢 = ( 𝑓 ·Q 𝑧 ) ) → ( 𝑤 = ( 𝑣 +Q 𝑢 ) → 𝑤 ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) ) ) )
24 23 com3l ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ ( 𝑓𝐴𝑧𝐶 ) ) → ( ( 𝑣 = ( 𝑥 ·Q 𝑦 ) ∧ 𝑢 = ( 𝑓 ·Q 𝑧 ) ) → ( ( 𝐴P𝐵P𝐶P ) → ( 𝑤 = ( 𝑣 +Q 𝑢 ) → 𝑤 ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) ) ) )
25 24 exp4b ( ( 𝑥𝐴𝑦𝐵 ) → ( ( 𝑓𝐴𝑧𝐶 ) → ( 𝑣 = ( 𝑥 ·Q 𝑦 ) → ( 𝑢 = ( 𝑓 ·Q 𝑧 ) → ( ( 𝐴P𝐵P𝐶P ) → ( 𝑤 = ( 𝑣 +Q 𝑢 ) → 𝑤 ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) ) ) ) ) )
26 25 com23 ( ( 𝑥𝐴𝑦𝐵 ) → ( 𝑣 = ( 𝑥 ·Q 𝑦 ) → ( ( 𝑓𝐴𝑧𝐶 ) → ( 𝑢 = ( 𝑓 ·Q 𝑧 ) → ( ( 𝐴P𝐵P𝐶P ) → ( 𝑤 = ( 𝑣 +Q 𝑢 ) → 𝑤 ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) ) ) ) ) )
27 26 rexlimivv ( ∃ 𝑥𝐴𝑦𝐵 𝑣 = ( 𝑥 ·Q 𝑦 ) → ( ( 𝑓𝐴𝑧𝐶 ) → ( 𝑢 = ( 𝑓 ·Q 𝑧 ) → ( ( 𝐴P𝐵P𝐶P ) → ( 𝑤 = ( 𝑣 +Q 𝑢 ) → 𝑤 ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) ) ) ) )
28 27 rexlimdvv ( ∃ 𝑥𝐴𝑦𝐵 𝑣 = ( 𝑥 ·Q 𝑦 ) → ( ∃ 𝑓𝐴𝑧𝐶 𝑢 = ( 𝑓 ·Q 𝑧 ) → ( ( 𝐴P𝐵P𝐶P ) → ( 𝑤 = ( 𝑣 +Q 𝑢 ) → 𝑤 ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) ) ) )
29 28 com3r ( ( 𝐴P𝐵P𝐶P ) → ( ∃ 𝑥𝐴𝑦𝐵 𝑣 = ( 𝑥 ·Q 𝑦 ) → ( ∃ 𝑓𝐴𝑧𝐶 𝑢 = ( 𝑓 ·Q 𝑧 ) → ( 𝑤 = ( 𝑣 +Q 𝑢 ) → 𝑤 ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) ) ) )
30 15 29 sylbid ( ( 𝐴P𝐵P𝐶P ) → ( 𝑣 ∈ ( 𝐴 ·P 𝐵 ) → ( ∃ 𝑓𝐴𝑧𝐶 𝑢 = ( 𝑓 ·Q 𝑧 ) → ( 𝑤 = ( 𝑣 +Q 𝑢 ) → 𝑤 ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) ) ) )
31 30 impd ( ( 𝐴P𝐵P𝐶P ) → ( ( 𝑣 ∈ ( 𝐴 ·P 𝐵 ) ∧ ∃ 𝑓𝐴𝑧𝐶 𝑢 = ( 𝑓 ·Q 𝑧 ) ) → ( 𝑤 = ( 𝑣 +Q 𝑢 ) → 𝑤 ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) ) )
32 12 31 sylbid ( ( 𝐴P𝐵P𝐶P ) → ( ( 𝑣 ∈ ( 𝐴 ·P 𝐵 ) ∧ 𝑢 ∈ ( 𝐴 ·P 𝐶 ) ) → ( 𝑤 = ( 𝑣 +Q 𝑢 ) → 𝑤 ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) ) )
33 32 rexlimdvv ( ( 𝐴P𝐵P𝐶P ) → ( ∃ 𝑣 ∈ ( 𝐴 ·P 𝐵 ) ∃ 𝑢 ∈ ( 𝐴 ·P 𝐶 ) 𝑤 = ( 𝑣 +Q 𝑢 ) → 𝑤 ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) )
34 7 33 sylbid ( ( 𝐴P𝐵P𝐶P ) → ( 𝑤 ∈ ( ( 𝐴 ·P 𝐵 ) +P ( 𝐴 ·P 𝐶 ) ) → 𝑤 ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ) )
35 34 ssrdv ( ( 𝐴P𝐵P𝐶P ) → ( ( 𝐴 ·P 𝐵 ) +P ( 𝐴 ·P 𝐶 ) ) ⊆ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) )