| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ditgsplit.x |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
| 2 |
|
ditgsplit.y |
⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
| 3 |
|
ditgsplit.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝑋 [,] 𝑌 ) ) |
| 4 |
|
ditgsplit.b |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝑋 [,] 𝑌 ) ) |
| 5 |
|
ditgsplit.c |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝑋 [,] 𝑌 ) ) |
| 6 |
|
ditgsplit.d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → 𝐷 ∈ 𝑉 ) |
| 7 |
|
ditgsplit.i |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐷 ) ∈ 𝐿1 ) |
| 8 |
|
ditgsplit.1 |
⊢ ( ( 𝜓 ∧ 𝜃 ) ↔ ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ) ) |
| 9 |
|
elicc2 |
⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) → ( 𝐴 ∈ ( 𝑋 [,] 𝑌 ) ↔ ( 𝐴 ∈ ℝ ∧ 𝑋 ≤ 𝐴 ∧ 𝐴 ≤ 𝑌 ) ) ) |
| 10 |
1 2 9
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ∈ ( 𝑋 [,] 𝑌 ) ↔ ( 𝐴 ∈ ℝ ∧ 𝑋 ≤ 𝐴 ∧ 𝐴 ≤ 𝑌 ) ) ) |
| 11 |
3 10
|
mpbid |
⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 𝑋 ≤ 𝐴 ∧ 𝐴 ≤ 𝑌 ) ) |
| 12 |
11
|
simp1d |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜃 ) ) → 𝐴 ∈ ℝ ) |
| 14 |
|
elicc2 |
⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) → ( 𝐶 ∈ ( 𝑋 [,] 𝑌 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝑋 ≤ 𝐶 ∧ 𝐶 ≤ 𝑌 ) ) ) |
| 15 |
1 2 14
|
syl2anc |
⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝑋 [,] 𝑌 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝑋 ≤ 𝐶 ∧ 𝐶 ≤ 𝑌 ) ) ) |
| 16 |
5 15
|
mpbid |
⊢ ( 𝜑 → ( 𝐶 ∈ ℝ ∧ 𝑋 ≤ 𝐶 ∧ 𝐶 ≤ 𝑌 ) ) |
| 17 |
16
|
simp1d |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 18 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜃 ) ) → 𝐶 ∈ ℝ ) |
| 19 |
|
elicc2 |
⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) → ( 𝐵 ∈ ( 𝑋 [,] 𝑌 ) ↔ ( 𝐵 ∈ ℝ ∧ 𝑋 ≤ 𝐵 ∧ 𝐵 ≤ 𝑌 ) ) ) |
| 20 |
1 2 19
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 ∈ ( 𝑋 [,] 𝑌 ) ↔ ( 𝐵 ∈ ℝ ∧ 𝑋 ≤ 𝐵 ∧ 𝐵 ≤ 𝑌 ) ) ) |
| 21 |
4 20
|
mpbid |
⊢ ( 𝜑 → ( 𝐵 ∈ ℝ ∧ 𝑋 ≤ 𝐵 ∧ 𝐵 ≤ 𝑌 ) ) |
| 22 |
21
|
simp1d |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜃 ) ) → 𝐵 ∈ ℝ ) |
| 24 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜃 ) ) → ( 𝜓 ∧ 𝜃 ) ) |
| 25 |
24 8
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜃 ) ) → ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ) ) |
| 26 |
25
|
simpld |
⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜃 ) ) → 𝐴 ≤ 𝐵 ) |
| 27 |
25
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜃 ) ) → 𝐵 ≤ 𝐶 ) |
| 28 |
|
elicc2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 ∈ ( 𝐴 [,] 𝐶 ) ↔ ( 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ) ) ) |
| 29 |
12 17 28
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 ∈ ( 𝐴 [,] 𝐶 ) ↔ ( 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ) ) ) |
| 30 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜃 ) ) → ( 𝐵 ∈ ( 𝐴 [,] 𝐶 ) ↔ ( 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ) ) ) |
| 31 |
23 26 27 30
|
mpbir3and |
⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜃 ) ) → 𝐵 ∈ ( 𝐴 [,] 𝐶 ) ) |
| 32 |
1
|
rexrd |
⊢ ( 𝜑 → 𝑋 ∈ ℝ* ) |
| 33 |
11
|
simp2d |
⊢ ( 𝜑 → 𝑋 ≤ 𝐴 ) |
| 34 |
|
iooss1 |
⊢ ( ( 𝑋 ∈ ℝ* ∧ 𝑋 ≤ 𝐴 ) → ( 𝐴 (,) 𝐶 ) ⊆ ( 𝑋 (,) 𝐶 ) ) |
| 35 |
32 33 34
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐶 ) ⊆ ( 𝑋 (,) 𝐶 ) ) |
| 36 |
2
|
rexrd |
⊢ ( 𝜑 → 𝑌 ∈ ℝ* ) |
| 37 |
16
|
simp3d |
⊢ ( 𝜑 → 𝐶 ≤ 𝑌 ) |
| 38 |
|
iooss2 |
⊢ ( ( 𝑌 ∈ ℝ* ∧ 𝐶 ≤ 𝑌 ) → ( 𝑋 (,) 𝐶 ) ⊆ ( 𝑋 (,) 𝑌 ) ) |
| 39 |
36 37 38
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 (,) 𝐶 ) ⊆ ( 𝑋 (,) 𝑌 ) ) |
| 40 |
35 39
|
sstrd |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐶 ) ⊆ ( 𝑋 (,) 𝑌 ) ) |
| 41 |
40
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐶 ) ) → 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) |
| 42 |
|
iblmbf |
⊢ ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐷 ) ∈ 𝐿1 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐷 ) ∈ MblFn ) |
| 43 |
7 42
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐷 ) ∈ MblFn ) |
| 44 |
43 6
|
mbfmptcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → 𝐷 ∈ ℂ ) |
| 45 |
41 44
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐶 ) ) → 𝐷 ∈ ℂ ) |
| 46 |
45
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜃 ) ) ∧ 𝑥 ∈ ( 𝐴 (,) 𝐶 ) ) → 𝐷 ∈ ℂ ) |
| 47 |
|
iooss1 |
⊢ ( ( 𝑋 ∈ ℝ* ∧ 𝑋 ≤ 𝐴 ) → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝑋 (,) 𝐵 ) ) |
| 48 |
32 33 47
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝑋 (,) 𝐵 ) ) |
| 49 |
21
|
simp3d |
⊢ ( 𝜑 → 𝐵 ≤ 𝑌 ) |
| 50 |
|
iooss2 |
⊢ ( ( 𝑌 ∈ ℝ* ∧ 𝐵 ≤ 𝑌 ) → ( 𝑋 (,) 𝐵 ) ⊆ ( 𝑋 (,) 𝑌 ) ) |
| 51 |
36 49 50
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 (,) 𝐵 ) ⊆ ( 𝑋 (,) 𝑌 ) ) |
| 52 |
48 51
|
sstrd |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝑋 (,) 𝑌 ) ) |
| 53 |
|
ioombl |
⊢ ( 𝐴 (,) 𝐵 ) ∈ dom vol |
| 54 |
53
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ∈ dom vol ) |
| 55 |
52 54 6 7
|
iblss |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝐷 ) ∈ 𝐿1 ) |
| 56 |
55
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜃 ) ) → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝐷 ) ∈ 𝐿1 ) |
| 57 |
21
|
simp2d |
⊢ ( 𝜑 → 𝑋 ≤ 𝐵 ) |
| 58 |
|
iooss1 |
⊢ ( ( 𝑋 ∈ ℝ* ∧ 𝑋 ≤ 𝐵 ) → ( 𝐵 (,) 𝐶 ) ⊆ ( 𝑋 (,) 𝐶 ) ) |
| 59 |
32 57 58
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 (,) 𝐶 ) ⊆ ( 𝑋 (,) 𝐶 ) ) |
| 60 |
59 39
|
sstrd |
⊢ ( 𝜑 → ( 𝐵 (,) 𝐶 ) ⊆ ( 𝑋 (,) 𝑌 ) ) |
| 61 |
|
ioombl |
⊢ ( 𝐵 (,) 𝐶 ) ∈ dom vol |
| 62 |
61
|
a1i |
⊢ ( 𝜑 → ( 𝐵 (,) 𝐶 ) ∈ dom vol ) |
| 63 |
60 62 6 7
|
iblss |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐵 (,) 𝐶 ) ↦ 𝐷 ) ∈ 𝐿1 ) |
| 64 |
63
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜃 ) ) → ( 𝑥 ∈ ( 𝐵 (,) 𝐶 ) ↦ 𝐷 ) ∈ 𝐿1 ) |
| 65 |
13 18 31 46 56 64
|
itgsplitioo |
⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜃 ) ) → ∫ ( 𝐴 (,) 𝐶 ) 𝐷 d 𝑥 = ( ∫ ( 𝐴 (,) 𝐵 ) 𝐷 d 𝑥 + ∫ ( 𝐵 (,) 𝐶 ) 𝐷 d 𝑥 ) ) |
| 66 |
13 23 18 26 27
|
letrd |
⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜃 ) ) → 𝐴 ≤ 𝐶 ) |
| 67 |
66
|
ditgpos |
⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜃 ) ) → ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 = ∫ ( 𝐴 (,) 𝐶 ) 𝐷 d 𝑥 ) |
| 68 |
26
|
ditgpos |
⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜃 ) ) → ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 = ∫ ( 𝐴 (,) 𝐵 ) 𝐷 d 𝑥 ) |
| 69 |
27
|
ditgpos |
⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜃 ) ) → ⨜ [ 𝐵 → 𝐶 ] 𝐷 d 𝑥 = ∫ ( 𝐵 (,) 𝐶 ) 𝐷 d 𝑥 ) |
| 70 |
68 69
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜃 ) ) → ( ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 + ⨜ [ 𝐵 → 𝐶 ] 𝐷 d 𝑥 ) = ( ∫ ( 𝐴 (,) 𝐵 ) 𝐷 d 𝑥 + ∫ ( 𝐵 (,) 𝐶 ) 𝐷 d 𝑥 ) ) |
| 71 |
65 67 70
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜃 ) ) → ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 = ( ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 + ⨜ [ 𝐵 → 𝐶 ] 𝐷 d 𝑥 ) ) |
| 72 |
71
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜃 ) → ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 = ( ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 + ⨜ [ 𝐵 → 𝐶 ] 𝐷 d 𝑥 ) ) |