Step |
Hyp |
Ref |
Expression |
1 |
|
asinf |
⊢ arcsin : ℂ ⟶ ℂ |
2 |
1
|
a1i |
⊢ ( ⊤ → arcsin : ℂ ⟶ ℂ ) |
3 |
|
ioossre |
⊢ ( - 1 (,) 1 ) ⊆ ℝ |
4 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
5 |
3 4
|
sstri |
⊢ ( - 1 (,) 1 ) ⊆ ℂ |
6 |
5
|
a1i |
⊢ ( ⊤ → ( - 1 (,) 1 ) ⊆ ℂ ) |
7 |
2 6
|
feqresmpt |
⊢ ( ⊤ → ( arcsin ↾ ( - 1 (,) 1 ) ) = ( 𝑥 ∈ ( - 1 (,) 1 ) ↦ ( arcsin ‘ 𝑥 ) ) ) |
8 |
7
|
oveq2d |
⊢ ( ⊤ → ( ℝ D ( arcsin ↾ ( - 1 (,) 1 ) ) ) = ( ℝ D ( 𝑥 ∈ ( - 1 (,) 1 ) ↦ ( arcsin ‘ 𝑥 ) ) ) ) |
9 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
10 |
|
reelprrecn |
⊢ ℝ ∈ { ℝ , ℂ } |
11 |
10
|
a1i |
⊢ ( ⊤ → ℝ ∈ { ℝ , ℂ } ) |
12 |
9
|
recld2 |
⊢ ℝ ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) |
13 |
|
neg1rr |
⊢ - 1 ∈ ℝ |
14 |
|
iocmnfcld |
⊢ ( - 1 ∈ ℝ → ( -∞ (,] - 1 ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |
15 |
13 14
|
ax-mp |
⊢ ( -∞ (,] - 1 ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) |
16 |
|
1re |
⊢ 1 ∈ ℝ |
17 |
|
icopnfcld |
⊢ ( 1 ∈ ℝ → ( 1 [,) +∞ ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |
18 |
16 17
|
ax-mp |
⊢ ( 1 [,) +∞ ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) |
19 |
|
uncld |
⊢ ( ( ( -∞ (,] - 1 ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 1 [,) +∞ ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) → ( ( -∞ (,] - 1 ) ∪ ( 1 [,) +∞ ) ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |
20 |
15 18 19
|
mp2an |
⊢ ( ( -∞ (,] - 1 ) ∪ ( 1 [,) +∞ ) ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) |
21 |
9
|
tgioo2 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
22 |
21
|
fveq2i |
⊢ ( Clsd ‘ ( topGen ‘ ran (,) ) ) = ( Clsd ‘ ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) |
23 |
20 22
|
eleqtri |
⊢ ( ( -∞ (,] - 1 ) ∪ ( 1 [,) +∞ ) ) ∈ ( Clsd ‘ ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) |
24 |
|
restcldr |
⊢ ( ( ℝ ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ∧ ( ( -∞ (,] - 1 ) ∪ ( 1 [,) +∞ ) ) ∈ ( Clsd ‘ ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) → ( ( -∞ (,] - 1 ) ∪ ( 1 [,) +∞ ) ) ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ) |
25 |
12 23 24
|
mp2an |
⊢ ( ( -∞ (,] - 1 ) ∪ ( 1 [,) +∞ ) ) ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) |
26 |
9
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
27 |
26
|
toponunii |
⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) |
28 |
27
|
cldopn |
⊢ ( ( ( -∞ (,] - 1 ) ∪ ( 1 [,) +∞ ) ) ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) → ( ℂ ∖ ( ( -∞ (,] - 1 ) ∪ ( 1 [,) +∞ ) ) ) ∈ ( TopOpen ‘ ℂfld ) ) |
29 |
25 28
|
mp1i |
⊢ ( ⊤ → ( ℂ ∖ ( ( -∞ (,] - 1 ) ∪ ( 1 [,) +∞ ) ) ) ∈ ( TopOpen ‘ ℂfld ) ) |
30 |
|
incom |
⊢ ( ℝ ∩ ( ℂ ∖ ( ( -∞ (,] - 1 ) ∪ ( 1 [,) +∞ ) ) ) ) = ( ( ℂ ∖ ( ( -∞ (,] - 1 ) ∪ ( 1 [,) +∞ ) ) ) ∩ ℝ ) |
31 |
|
eqid |
⊢ ( ℂ ∖ ( ( -∞ (,] - 1 ) ∪ ( 1 [,) +∞ ) ) ) = ( ℂ ∖ ( ( -∞ (,] - 1 ) ∪ ( 1 [,) +∞ ) ) ) |
32 |
31
|
asindmre |
⊢ ( ( ℂ ∖ ( ( -∞ (,] - 1 ) ∪ ( 1 [,) +∞ ) ) ) ∩ ℝ ) = ( - 1 (,) 1 ) |
33 |
30 32
|
eqtri |
⊢ ( ℝ ∩ ( ℂ ∖ ( ( -∞ (,] - 1 ) ∪ ( 1 [,) +∞ ) ) ) ) = ( - 1 (,) 1 ) |
34 |
33
|
a1i |
⊢ ( ⊤ → ( ℝ ∩ ( ℂ ∖ ( ( -∞ (,] - 1 ) ∪ ( 1 [,) +∞ ) ) ) ) = ( - 1 (,) 1 ) ) |
35 |
|
eldifi |
⊢ ( 𝑥 ∈ ( ℂ ∖ ( ( -∞ (,] - 1 ) ∪ ( 1 [,) +∞ ) ) ) → 𝑥 ∈ ℂ ) |
36 |
|
asincl |
⊢ ( 𝑥 ∈ ℂ → ( arcsin ‘ 𝑥 ) ∈ ℂ ) |
37 |
35 36
|
syl |
⊢ ( 𝑥 ∈ ( ℂ ∖ ( ( -∞ (,] - 1 ) ∪ ( 1 [,) +∞ ) ) ) → ( arcsin ‘ 𝑥 ) ∈ ℂ ) |
38 |
37
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( ℂ ∖ ( ( -∞ (,] - 1 ) ∪ ( 1 [,) +∞ ) ) ) ) → ( arcsin ‘ 𝑥 ) ∈ ℂ ) |
39 |
|
ovexd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( ℂ ∖ ( ( -∞ (,] - 1 ) ∪ ( 1 [,) +∞ ) ) ) ) → ( 1 / ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) ) ∈ V ) |
40 |
|
difssd |
⊢ ( ⊤ → ( ℂ ∖ ( ( -∞ (,] - 1 ) ∪ ( 1 [,) +∞ ) ) ) ⊆ ℂ ) |
41 |
2 40
|
feqresmpt |
⊢ ( ⊤ → ( arcsin ↾ ( ℂ ∖ ( ( -∞ (,] - 1 ) ∪ ( 1 [,) +∞ ) ) ) ) = ( 𝑥 ∈ ( ℂ ∖ ( ( -∞ (,] - 1 ) ∪ ( 1 [,) +∞ ) ) ) ↦ ( arcsin ‘ 𝑥 ) ) ) |
42 |
41
|
oveq2d |
⊢ ( ⊤ → ( ℂ D ( arcsin ↾ ( ℂ ∖ ( ( -∞ (,] - 1 ) ∪ ( 1 [,) +∞ ) ) ) ) ) = ( ℂ D ( 𝑥 ∈ ( ℂ ∖ ( ( -∞ (,] - 1 ) ∪ ( 1 [,) +∞ ) ) ) ↦ ( arcsin ‘ 𝑥 ) ) ) ) |
43 |
31
|
dvasin |
⊢ ( ℂ D ( arcsin ↾ ( ℂ ∖ ( ( -∞ (,] - 1 ) ∪ ( 1 [,) +∞ ) ) ) ) ) = ( 𝑥 ∈ ( ℂ ∖ ( ( -∞ (,] - 1 ) ∪ ( 1 [,) +∞ ) ) ) ↦ ( 1 / ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) ) ) |
44 |
42 43
|
eqtr3di |
⊢ ( ⊤ → ( ℂ D ( 𝑥 ∈ ( ℂ ∖ ( ( -∞ (,] - 1 ) ∪ ( 1 [,) +∞ ) ) ) ↦ ( arcsin ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( ℂ ∖ ( ( -∞ (,] - 1 ) ∪ ( 1 [,) +∞ ) ) ) ↦ ( 1 / ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) ) ) ) |
45 |
9 11 29 34 38 39 44
|
dvmptres3 |
⊢ ( ⊤ → ( ℝ D ( 𝑥 ∈ ( - 1 (,) 1 ) ↦ ( arcsin ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( - 1 (,) 1 ) ↦ ( 1 / ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) ) ) ) |
46 |
8 45
|
eqtrd |
⊢ ( ⊤ → ( ℝ D ( arcsin ↾ ( - 1 (,) 1 ) ) ) = ( 𝑥 ∈ ( - 1 (,) 1 ) ↦ ( 1 / ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) ) ) ) |
47 |
46
|
mptru |
⊢ ( ℝ D ( arcsin ↾ ( - 1 (,) 1 ) ) ) = ( 𝑥 ∈ ( - 1 (,) 1 ) ↦ ( 1 / ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) ) ) |