| Step |
Hyp |
Ref |
Expression |
| 1 |
|
asinf |
|- arcsin : CC --> CC |
| 2 |
1
|
a1i |
|- ( T. -> arcsin : CC --> CC ) |
| 3 |
|
ioossre |
|- ( -u 1 (,) 1 ) C_ RR |
| 4 |
|
ax-resscn |
|- RR C_ CC |
| 5 |
3 4
|
sstri |
|- ( -u 1 (,) 1 ) C_ CC |
| 6 |
5
|
a1i |
|- ( T. -> ( -u 1 (,) 1 ) C_ CC ) |
| 7 |
2 6
|
feqresmpt |
|- ( T. -> ( arcsin |` ( -u 1 (,) 1 ) ) = ( x e. ( -u 1 (,) 1 ) |-> ( arcsin ` x ) ) ) |
| 8 |
7
|
oveq2d |
|- ( T. -> ( RR _D ( arcsin |` ( -u 1 (,) 1 ) ) ) = ( RR _D ( x e. ( -u 1 (,) 1 ) |-> ( arcsin ` x ) ) ) ) |
| 9 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 10 |
|
reelprrecn |
|- RR e. { RR , CC } |
| 11 |
10
|
a1i |
|- ( T. -> RR e. { RR , CC } ) |
| 12 |
9
|
recld2 |
|- RR e. ( Clsd ` ( TopOpen ` CCfld ) ) |
| 13 |
|
neg1rr |
|- -u 1 e. RR |
| 14 |
|
iocmnfcld |
|- ( -u 1 e. RR -> ( -oo (,] -u 1 ) e. ( Clsd ` ( topGen ` ran (,) ) ) ) |
| 15 |
13 14
|
ax-mp |
|- ( -oo (,] -u 1 ) e. ( Clsd ` ( topGen ` ran (,) ) ) |
| 16 |
|
1re |
|- 1 e. RR |
| 17 |
|
icopnfcld |
|- ( 1 e. RR -> ( 1 [,) +oo ) e. ( Clsd ` ( topGen ` ran (,) ) ) ) |
| 18 |
16 17
|
ax-mp |
|- ( 1 [,) +oo ) e. ( Clsd ` ( topGen ` ran (,) ) ) |
| 19 |
|
uncld |
|- ( ( ( -oo (,] -u 1 ) e. ( Clsd ` ( topGen ` ran (,) ) ) /\ ( 1 [,) +oo ) e. ( Clsd ` ( topGen ` ran (,) ) ) ) -> ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) e. ( Clsd ` ( topGen ` ran (,) ) ) ) |
| 20 |
15 18 19
|
mp2an |
|- ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) e. ( Clsd ` ( topGen ` ran (,) ) ) |
| 21 |
|
tgioo4 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
| 22 |
21
|
fveq2i |
|- ( Clsd ` ( topGen ` ran (,) ) ) = ( Clsd ` ( ( TopOpen ` CCfld ) |`t RR ) ) |
| 23 |
20 22
|
eleqtri |
|- ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) e. ( Clsd ` ( ( TopOpen ` CCfld ) |`t RR ) ) |
| 24 |
|
restcldr |
|- ( ( RR e. ( Clsd ` ( TopOpen ` CCfld ) ) /\ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) e. ( Clsd ` ( ( TopOpen ` CCfld ) |`t RR ) ) ) -> ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) e. ( Clsd ` ( TopOpen ` CCfld ) ) ) |
| 25 |
12 23 24
|
mp2an |
|- ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) e. ( Clsd ` ( TopOpen ` CCfld ) ) |
| 26 |
9
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 27 |
26
|
toponunii |
|- CC = U. ( TopOpen ` CCfld ) |
| 28 |
27
|
cldopn |
|- ( ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) e. ( Clsd ` ( TopOpen ` CCfld ) ) -> ( CC \ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) e. ( TopOpen ` CCfld ) ) |
| 29 |
25 28
|
mp1i |
|- ( T. -> ( CC \ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) e. ( TopOpen ` CCfld ) ) |
| 30 |
|
incom |
|- ( RR i^i ( CC \ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) ) = ( ( CC \ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) i^i RR ) |
| 31 |
|
eqid |
|- ( CC \ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) = ( CC \ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) |
| 32 |
31
|
asindmre |
|- ( ( CC \ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) i^i RR ) = ( -u 1 (,) 1 ) |
| 33 |
30 32
|
eqtri |
|- ( RR i^i ( CC \ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) ) = ( -u 1 (,) 1 ) |
| 34 |
33
|
a1i |
|- ( T. -> ( RR i^i ( CC \ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) ) = ( -u 1 (,) 1 ) ) |
| 35 |
|
eldifi |
|- ( x e. ( CC \ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) -> x e. CC ) |
| 36 |
|
asincl |
|- ( x e. CC -> ( arcsin ` x ) e. CC ) |
| 37 |
35 36
|
syl |
|- ( x e. ( CC \ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) -> ( arcsin ` x ) e. CC ) |
| 38 |
37
|
adantl |
|- ( ( T. /\ x e. ( CC \ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) ) -> ( arcsin ` x ) e. CC ) |
| 39 |
|
ovexd |
|- ( ( T. /\ x e. ( CC \ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) ) -> ( 1 / ( sqrt ` ( 1 - ( x ^ 2 ) ) ) ) e. _V ) |
| 40 |
|
difssd |
|- ( T. -> ( CC \ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) C_ CC ) |
| 41 |
2 40
|
feqresmpt |
|- ( T. -> ( arcsin |` ( CC \ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) ) = ( x e. ( CC \ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) |-> ( arcsin ` x ) ) ) |
| 42 |
41
|
oveq2d |
|- ( T. -> ( CC _D ( arcsin |` ( CC \ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) ) ) = ( CC _D ( x e. ( CC \ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) |-> ( arcsin ` x ) ) ) ) |
| 43 |
31
|
dvasin |
|- ( CC _D ( arcsin |` ( CC \ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) ) ) = ( x e. ( CC \ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) |-> ( 1 / ( sqrt ` ( 1 - ( x ^ 2 ) ) ) ) ) |
| 44 |
42 43
|
eqtr3di |
|- ( T. -> ( CC _D ( x e. ( CC \ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) |-> ( arcsin ` x ) ) ) = ( x e. ( CC \ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) |-> ( 1 / ( sqrt ` ( 1 - ( x ^ 2 ) ) ) ) ) ) |
| 45 |
9 11 29 34 38 39 44
|
dvmptres3 |
|- ( T. -> ( RR _D ( x e. ( -u 1 (,) 1 ) |-> ( arcsin ` x ) ) ) = ( x e. ( -u 1 (,) 1 ) |-> ( 1 / ( sqrt ` ( 1 - ( x ^ 2 ) ) ) ) ) ) |
| 46 |
8 45
|
eqtrd |
|- ( T. -> ( RR _D ( arcsin |` ( -u 1 (,) 1 ) ) ) = ( x e. ( -u 1 (,) 1 ) |-> ( 1 / ( sqrt ` ( 1 - ( x ^ 2 ) ) ) ) ) ) |
| 47 |
46
|
mptru |
|- ( RR _D ( arcsin |` ( -u 1 (,) 1 ) ) ) = ( x e. ( -u 1 (,) 1 ) |-> ( 1 / ( sqrt ` ( 1 - ( x ^ 2 ) ) ) ) ) |