Step |
Hyp |
Ref |
Expression |
1 |
|
acosf |
|- arccos : CC --> CC |
2 |
1
|
a1i |
|- ( T. -> arccos : CC --> CC ) |
3 |
|
ioossre |
|- ( -u 1 (,) 1 ) C_ RR |
4 |
|
ax-resscn |
|- RR C_ CC |
5 |
3 4
|
sstri |
|- ( -u 1 (,) 1 ) C_ CC |
6 |
5
|
a1i |
|- ( T. -> ( -u 1 (,) 1 ) C_ CC ) |
7 |
2 6
|
feqresmpt |
|- ( T. -> ( arccos |` ( -u 1 (,) 1 ) ) = ( x e. ( -u 1 (,) 1 ) |-> ( arccos ` x ) ) ) |
8 |
7
|
oveq2d |
|- ( T. -> ( RR _D ( arccos |` ( -u 1 (,) 1 ) ) ) = ( RR _D ( x e. ( -u 1 (,) 1 ) |-> ( arccos ` x ) ) ) ) |
9 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
10 |
|
reelprrecn |
|- RR e. { RR , CC } |
11 |
10
|
a1i |
|- ( T. -> RR e. { RR , CC } ) |
12 |
9
|
recld2 |
|- RR e. ( Clsd ` ( TopOpen ` CCfld ) ) |
13 |
|
neg1rr |
|- -u 1 e. RR |
14 |
|
iocmnfcld |
|- ( -u 1 e. RR -> ( -oo (,] -u 1 ) e. ( Clsd ` ( topGen ` ran (,) ) ) ) |
15 |
13 14
|
ax-mp |
|- ( -oo (,] -u 1 ) e. ( Clsd ` ( topGen ` ran (,) ) ) |
16 |
|
1re |
|- 1 e. RR |
17 |
|
icopnfcld |
|- ( 1 e. RR -> ( 1 [,) +oo ) e. ( Clsd ` ( topGen ` ran (,) ) ) ) |
18 |
16 17
|
ax-mp |
|- ( 1 [,) +oo ) e. ( Clsd ` ( topGen ` ran (,) ) ) |
19 |
|
uncld |
|- ( ( ( -oo (,] -u 1 ) e. ( Clsd ` ( topGen ` ran (,) ) ) /\ ( 1 [,) +oo ) e. ( Clsd ` ( topGen ` ran (,) ) ) ) -> ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) e. ( Clsd ` ( topGen ` ran (,) ) ) ) |
20 |
15 18 19
|
mp2an |
|- ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) e. ( Clsd ` ( topGen ` ran (,) ) ) |
21 |
9
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
22 |
21
|
fveq2i |
|- ( Clsd ` ( topGen ` ran (,) ) ) = ( Clsd ` ( ( TopOpen ` CCfld ) |`t RR ) ) |
23 |
20 22
|
eleqtri |
|- ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) e. ( Clsd ` ( ( TopOpen ` CCfld ) |`t RR ) ) |
24 |
|
restcldr |
|- ( ( RR e. ( Clsd ` ( TopOpen ` CCfld ) ) /\ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) e. ( Clsd ` ( ( TopOpen ` CCfld ) |`t RR ) ) ) -> ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) e. ( Clsd ` ( TopOpen ` CCfld ) ) ) |
25 |
12 23 24
|
mp2an |
|- ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) e. ( Clsd ` ( TopOpen ` CCfld ) ) |
26 |
9
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
27 |
26
|
toponunii |
|- CC = U. ( TopOpen ` CCfld ) |
28 |
27
|
cldopn |
|- ( ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) e. ( Clsd ` ( TopOpen ` CCfld ) ) -> ( CC \ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) e. ( TopOpen ` CCfld ) ) |
29 |
25 28
|
mp1i |
|- ( T. -> ( CC \ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) e. ( TopOpen ` CCfld ) ) |
30 |
|
incom |
|- ( RR i^i ( CC \ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) ) = ( ( CC \ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) i^i RR ) |
31 |
|
eqid |
|- ( CC \ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) = ( CC \ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) |
32 |
31
|
asindmre |
|- ( ( CC \ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) i^i RR ) = ( -u 1 (,) 1 ) |
33 |
30 32
|
eqtri |
|- ( RR i^i ( CC \ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) ) = ( -u 1 (,) 1 ) |
34 |
33
|
a1i |
|- ( T. -> ( RR i^i ( CC \ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) ) = ( -u 1 (,) 1 ) ) |
35 |
|
eldifi |
|- ( x e. ( CC \ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) -> x e. CC ) |
36 |
|
acoscl |
|- ( x e. CC -> ( arccos ` x ) e. CC ) |
37 |
35 36
|
syl |
|- ( x e. ( CC \ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) -> ( arccos ` x ) e. CC ) |
38 |
37
|
adantl |
|- ( ( T. /\ x e. ( CC \ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) ) -> ( arccos ` x ) e. CC ) |
39 |
|
ovexd |
|- ( ( T. /\ x e. ( CC \ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) ) -> ( -u 1 / ( sqrt ` ( 1 - ( x ^ 2 ) ) ) ) e. _V ) |
40 |
|
difssd |
|- ( T. -> ( CC \ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) C_ CC ) |
41 |
2 40
|
feqresmpt |
|- ( T. -> ( arccos |` ( CC \ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) ) = ( x e. ( CC \ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) |-> ( arccos ` x ) ) ) |
42 |
41
|
oveq2d |
|- ( T. -> ( CC _D ( arccos |` ( CC \ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) ) ) = ( CC _D ( x e. ( CC \ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) |-> ( arccos ` x ) ) ) ) |
43 |
31
|
dvacos |
|- ( CC _D ( arccos |` ( CC \ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) ) ) = ( x e. ( CC \ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) |-> ( -u 1 / ( sqrt ` ( 1 - ( x ^ 2 ) ) ) ) ) |
44 |
42 43
|
eqtr3di |
|- ( T. -> ( CC _D ( x e. ( CC \ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) |-> ( arccos ` x ) ) ) = ( x e. ( CC \ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) |-> ( -u 1 / ( sqrt ` ( 1 - ( x ^ 2 ) ) ) ) ) ) |
45 |
9 11 29 34 38 39 44
|
dvmptres3 |
|- ( T. -> ( RR _D ( x e. ( -u 1 (,) 1 ) |-> ( arccos ` x ) ) ) = ( x e. ( -u 1 (,) 1 ) |-> ( -u 1 / ( sqrt ` ( 1 - ( x ^ 2 ) ) ) ) ) ) |
46 |
8 45
|
eqtrd |
|- ( T. -> ( RR _D ( arccos |` ( -u 1 (,) 1 ) ) ) = ( x e. ( -u 1 (,) 1 ) |-> ( -u 1 / ( sqrt ` ( 1 - ( x ^ 2 ) ) ) ) ) ) |
47 |
46
|
mptru |
|- ( RR _D ( arccos |` ( -u 1 (,) 1 ) ) ) = ( x e. ( -u 1 (,) 1 ) |-> ( -u 1 / ( sqrt ` ( 1 - ( x ^ 2 ) ) ) ) ) |