| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvasin.d |
|- D = ( CC \ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) |
| 2 |
|
df-acos |
|- arccos = ( x e. CC |-> ( ( _pi / 2 ) - ( arcsin ` x ) ) ) |
| 3 |
2
|
reseq1i |
|- ( arccos |` D ) = ( ( x e. CC |-> ( ( _pi / 2 ) - ( arcsin ` x ) ) ) |` D ) |
| 4 |
|
difss |
|- ( CC \ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) C_ CC |
| 5 |
1 4
|
eqsstri |
|- D C_ CC |
| 6 |
|
resmpt |
|- ( D C_ CC -> ( ( x e. CC |-> ( ( _pi / 2 ) - ( arcsin ` x ) ) ) |` D ) = ( x e. D |-> ( ( _pi / 2 ) - ( arcsin ` x ) ) ) ) |
| 7 |
5 6
|
ax-mp |
|- ( ( x e. CC |-> ( ( _pi / 2 ) - ( arcsin ` x ) ) ) |` D ) = ( x e. D |-> ( ( _pi / 2 ) - ( arcsin ` x ) ) ) |
| 8 |
3 7
|
eqtri |
|- ( arccos |` D ) = ( x e. D |-> ( ( _pi / 2 ) - ( arcsin ` x ) ) ) |
| 9 |
8
|
oveq2i |
|- ( CC _D ( arccos |` D ) ) = ( CC _D ( x e. D |-> ( ( _pi / 2 ) - ( arcsin ` x ) ) ) ) |
| 10 |
|
cnelprrecn |
|- CC e. { RR , CC } |
| 11 |
10
|
a1i |
|- ( T. -> CC e. { RR , CC } ) |
| 12 |
|
halfpire |
|- ( _pi / 2 ) e. RR |
| 13 |
12
|
recni |
|- ( _pi / 2 ) e. CC |
| 14 |
13
|
a1i |
|- ( ( T. /\ x e. D ) -> ( _pi / 2 ) e. CC ) |
| 15 |
|
c0ex |
|- 0 e. _V |
| 16 |
15
|
a1i |
|- ( ( T. /\ x e. D ) -> 0 e. _V ) |
| 17 |
13
|
a1i |
|- ( ( T. /\ x e. CC ) -> ( _pi / 2 ) e. CC ) |
| 18 |
15
|
a1i |
|- ( ( T. /\ x e. CC ) -> 0 e. _V ) |
| 19 |
13
|
a1i |
|- ( T. -> ( _pi / 2 ) e. CC ) |
| 20 |
11 19
|
dvmptc |
|- ( T. -> ( CC _D ( x e. CC |-> ( _pi / 2 ) ) ) = ( x e. CC |-> 0 ) ) |
| 21 |
5
|
a1i |
|- ( T. -> D C_ CC ) |
| 22 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 23 |
22
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 24 |
23
|
toponrestid |
|- ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) |
| 25 |
22
|
recld2 |
|- RR e. ( Clsd ` ( TopOpen ` CCfld ) ) |
| 26 |
|
neg1rr |
|- -u 1 e. RR |
| 27 |
|
iocmnfcld |
|- ( -u 1 e. RR -> ( -oo (,] -u 1 ) e. ( Clsd ` ( topGen ` ran (,) ) ) ) |
| 28 |
26 27
|
ax-mp |
|- ( -oo (,] -u 1 ) e. ( Clsd ` ( topGen ` ran (,) ) ) |
| 29 |
|
tgioo4 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
| 30 |
29
|
fveq2i |
|- ( Clsd ` ( topGen ` ran (,) ) ) = ( Clsd ` ( ( TopOpen ` CCfld ) |`t RR ) ) |
| 31 |
28 30
|
eleqtri |
|- ( -oo (,] -u 1 ) e. ( Clsd ` ( ( TopOpen ` CCfld ) |`t RR ) ) |
| 32 |
|
restcldr |
|- ( ( RR e. ( Clsd ` ( TopOpen ` CCfld ) ) /\ ( -oo (,] -u 1 ) e. ( Clsd ` ( ( TopOpen ` CCfld ) |`t RR ) ) ) -> ( -oo (,] -u 1 ) e. ( Clsd ` ( TopOpen ` CCfld ) ) ) |
| 33 |
25 31 32
|
mp2an |
|- ( -oo (,] -u 1 ) e. ( Clsd ` ( TopOpen ` CCfld ) ) |
| 34 |
|
1re |
|- 1 e. RR |
| 35 |
|
icopnfcld |
|- ( 1 e. RR -> ( 1 [,) +oo ) e. ( Clsd ` ( topGen ` ran (,) ) ) ) |
| 36 |
34 35
|
ax-mp |
|- ( 1 [,) +oo ) e. ( Clsd ` ( topGen ` ran (,) ) ) |
| 37 |
36 30
|
eleqtri |
|- ( 1 [,) +oo ) e. ( Clsd ` ( ( TopOpen ` CCfld ) |`t RR ) ) |
| 38 |
|
restcldr |
|- ( ( RR e. ( Clsd ` ( TopOpen ` CCfld ) ) /\ ( 1 [,) +oo ) e. ( Clsd ` ( ( TopOpen ` CCfld ) |`t RR ) ) ) -> ( 1 [,) +oo ) e. ( Clsd ` ( TopOpen ` CCfld ) ) ) |
| 39 |
25 37 38
|
mp2an |
|- ( 1 [,) +oo ) e. ( Clsd ` ( TopOpen ` CCfld ) ) |
| 40 |
|
uncld |
|- ( ( ( -oo (,] -u 1 ) e. ( Clsd ` ( TopOpen ` CCfld ) ) /\ ( 1 [,) +oo ) e. ( Clsd ` ( TopOpen ` CCfld ) ) ) -> ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) e. ( Clsd ` ( TopOpen ` CCfld ) ) ) |
| 41 |
33 39 40
|
mp2an |
|- ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) e. ( Clsd ` ( TopOpen ` CCfld ) ) |
| 42 |
23
|
toponunii |
|- CC = U. ( TopOpen ` CCfld ) |
| 43 |
42
|
cldopn |
|- ( ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) e. ( Clsd ` ( TopOpen ` CCfld ) ) -> ( CC \ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) e. ( TopOpen ` CCfld ) ) |
| 44 |
41 43
|
ax-mp |
|- ( CC \ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) e. ( TopOpen ` CCfld ) |
| 45 |
1 44
|
eqeltri |
|- D e. ( TopOpen ` CCfld ) |
| 46 |
45
|
a1i |
|- ( T. -> D e. ( TopOpen ` CCfld ) ) |
| 47 |
11 17 18 20 21 24 22 46
|
dvmptres |
|- ( T. -> ( CC _D ( x e. D |-> ( _pi / 2 ) ) ) = ( x e. D |-> 0 ) ) |
| 48 |
5
|
sseli |
|- ( x e. D -> x e. CC ) |
| 49 |
|
asincl |
|- ( x e. CC -> ( arcsin ` x ) e. CC ) |
| 50 |
48 49
|
syl |
|- ( x e. D -> ( arcsin ` x ) e. CC ) |
| 51 |
50
|
adantl |
|- ( ( T. /\ x e. D ) -> ( arcsin ` x ) e. CC ) |
| 52 |
|
ovexd |
|- ( ( T. /\ x e. D ) -> ( 1 / ( sqrt ` ( 1 - ( x ^ 2 ) ) ) ) e. _V ) |
| 53 |
|
asinf |
|- arcsin : CC --> CC |
| 54 |
53
|
a1i |
|- ( T. -> arcsin : CC --> CC ) |
| 55 |
54 21
|
feqresmpt |
|- ( T. -> ( arcsin |` D ) = ( x e. D |-> ( arcsin ` x ) ) ) |
| 56 |
55
|
oveq2d |
|- ( T. -> ( CC _D ( arcsin |` D ) ) = ( CC _D ( x e. D |-> ( arcsin ` x ) ) ) ) |
| 57 |
1
|
dvasin |
|- ( CC _D ( arcsin |` D ) ) = ( x e. D |-> ( 1 / ( sqrt ` ( 1 - ( x ^ 2 ) ) ) ) ) |
| 58 |
56 57
|
eqtr3di |
|- ( T. -> ( CC _D ( x e. D |-> ( arcsin ` x ) ) ) = ( x e. D |-> ( 1 / ( sqrt ` ( 1 - ( x ^ 2 ) ) ) ) ) ) |
| 59 |
11 14 16 47 51 52 58
|
dvmptsub |
|- ( T. -> ( CC _D ( x e. D |-> ( ( _pi / 2 ) - ( arcsin ` x ) ) ) ) = ( x e. D |-> ( 0 - ( 1 / ( sqrt ` ( 1 - ( x ^ 2 ) ) ) ) ) ) ) |
| 60 |
59
|
mptru |
|- ( CC _D ( x e. D |-> ( ( _pi / 2 ) - ( arcsin ` x ) ) ) ) = ( x e. D |-> ( 0 - ( 1 / ( sqrt ` ( 1 - ( x ^ 2 ) ) ) ) ) ) |
| 61 |
|
df-neg |
|- -u ( 1 / ( sqrt ` ( 1 - ( x ^ 2 ) ) ) ) = ( 0 - ( 1 / ( sqrt ` ( 1 - ( x ^ 2 ) ) ) ) ) |
| 62 |
|
1cnd |
|- ( x e. D -> 1 e. CC ) |
| 63 |
|
ax-1cn |
|- 1 e. CC |
| 64 |
48
|
sqcld |
|- ( x e. D -> ( x ^ 2 ) e. CC ) |
| 65 |
|
subcl |
|- ( ( 1 e. CC /\ ( x ^ 2 ) e. CC ) -> ( 1 - ( x ^ 2 ) ) e. CC ) |
| 66 |
63 64 65
|
sylancr |
|- ( x e. D -> ( 1 - ( x ^ 2 ) ) e. CC ) |
| 67 |
66
|
sqrtcld |
|- ( x e. D -> ( sqrt ` ( 1 - ( x ^ 2 ) ) ) e. CC ) |
| 68 |
|
eldifn |
|- ( x e. ( CC \ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) -> -. x e. ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) |
| 69 |
68 1
|
eleq2s |
|- ( x e. D -> -. x e. ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) |
| 70 |
|
mnfxr |
|- -oo e. RR* |
| 71 |
26
|
rexri |
|- -u 1 e. RR* |
| 72 |
|
mnflt |
|- ( -u 1 e. RR -> -oo < -u 1 ) |
| 73 |
26 72
|
ax-mp |
|- -oo < -u 1 |
| 74 |
|
ubioc1 |
|- ( ( -oo e. RR* /\ -u 1 e. RR* /\ -oo < -u 1 ) -> -u 1 e. ( -oo (,] -u 1 ) ) |
| 75 |
70 71 73 74
|
mp3an |
|- -u 1 e. ( -oo (,] -u 1 ) |
| 76 |
|
eleq1 |
|- ( x = -u 1 -> ( x e. ( -oo (,] -u 1 ) <-> -u 1 e. ( -oo (,] -u 1 ) ) ) |
| 77 |
75 76
|
mpbiri |
|- ( x = -u 1 -> x e. ( -oo (,] -u 1 ) ) |
| 78 |
34
|
rexri |
|- 1 e. RR* |
| 79 |
|
pnfxr |
|- +oo e. RR* |
| 80 |
|
ltpnf |
|- ( 1 e. RR -> 1 < +oo ) |
| 81 |
34 80
|
ax-mp |
|- 1 < +oo |
| 82 |
|
lbico1 |
|- ( ( 1 e. RR* /\ +oo e. RR* /\ 1 < +oo ) -> 1 e. ( 1 [,) +oo ) ) |
| 83 |
78 79 81 82
|
mp3an |
|- 1 e. ( 1 [,) +oo ) |
| 84 |
|
eleq1 |
|- ( x = 1 -> ( x e. ( 1 [,) +oo ) <-> 1 e. ( 1 [,) +oo ) ) ) |
| 85 |
83 84
|
mpbiri |
|- ( x = 1 -> x e. ( 1 [,) +oo ) ) |
| 86 |
77 85
|
orim12i |
|- ( ( x = -u 1 \/ x = 1 ) -> ( x e. ( -oo (,] -u 1 ) \/ x e. ( 1 [,) +oo ) ) ) |
| 87 |
86
|
orcoms |
|- ( ( x = 1 \/ x = -u 1 ) -> ( x e. ( -oo (,] -u 1 ) \/ x e. ( 1 [,) +oo ) ) ) |
| 88 |
|
elun |
|- ( x e. ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) <-> ( x e. ( -oo (,] -u 1 ) \/ x e. ( 1 [,) +oo ) ) ) |
| 89 |
87 88
|
sylibr |
|- ( ( x = 1 \/ x = -u 1 ) -> x e. ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) |
| 90 |
69 89
|
nsyl |
|- ( x e. D -> -. ( x = 1 \/ x = -u 1 ) ) |
| 91 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
| 92 |
|
1cnd |
|- ( ( x e. CC /\ ( sqrt ` ( 1 - ( x ^ 2 ) ) ) = 0 ) -> 1 e. CC ) |
| 93 |
|
sqcl |
|- ( x e. CC -> ( x ^ 2 ) e. CC ) |
| 94 |
93
|
adantr |
|- ( ( x e. CC /\ ( sqrt ` ( 1 - ( x ^ 2 ) ) ) = 0 ) -> ( x ^ 2 ) e. CC ) |
| 95 |
63 93 65
|
sylancr |
|- ( x e. CC -> ( 1 - ( x ^ 2 ) ) e. CC ) |
| 96 |
95
|
adantr |
|- ( ( x e. CC /\ ( sqrt ` ( 1 - ( x ^ 2 ) ) ) = 0 ) -> ( 1 - ( x ^ 2 ) ) e. CC ) |
| 97 |
|
simpr |
|- ( ( x e. CC /\ ( sqrt ` ( 1 - ( x ^ 2 ) ) ) = 0 ) -> ( sqrt ` ( 1 - ( x ^ 2 ) ) ) = 0 ) |
| 98 |
96 97
|
sqr00d |
|- ( ( x e. CC /\ ( sqrt ` ( 1 - ( x ^ 2 ) ) ) = 0 ) -> ( 1 - ( x ^ 2 ) ) = 0 ) |
| 99 |
92 94 98
|
subeq0d |
|- ( ( x e. CC /\ ( sqrt ` ( 1 - ( x ^ 2 ) ) ) = 0 ) -> 1 = ( x ^ 2 ) ) |
| 100 |
91 99
|
eqtr2id |
|- ( ( x e. CC /\ ( sqrt ` ( 1 - ( x ^ 2 ) ) ) = 0 ) -> ( x ^ 2 ) = ( 1 ^ 2 ) ) |
| 101 |
100
|
ex |
|- ( x e. CC -> ( ( sqrt ` ( 1 - ( x ^ 2 ) ) ) = 0 -> ( x ^ 2 ) = ( 1 ^ 2 ) ) ) |
| 102 |
|
sqeqor |
|- ( ( x e. CC /\ 1 e. CC ) -> ( ( x ^ 2 ) = ( 1 ^ 2 ) <-> ( x = 1 \/ x = -u 1 ) ) ) |
| 103 |
63 102
|
mpan2 |
|- ( x e. CC -> ( ( x ^ 2 ) = ( 1 ^ 2 ) <-> ( x = 1 \/ x = -u 1 ) ) ) |
| 104 |
101 103
|
sylibd |
|- ( x e. CC -> ( ( sqrt ` ( 1 - ( x ^ 2 ) ) ) = 0 -> ( x = 1 \/ x = -u 1 ) ) ) |
| 105 |
104
|
necon3bd |
|- ( x e. CC -> ( -. ( x = 1 \/ x = -u 1 ) -> ( sqrt ` ( 1 - ( x ^ 2 ) ) ) =/= 0 ) ) |
| 106 |
48 90 105
|
sylc |
|- ( x e. D -> ( sqrt ` ( 1 - ( x ^ 2 ) ) ) =/= 0 ) |
| 107 |
62 67 106
|
divnegd |
|- ( x e. D -> -u ( 1 / ( sqrt ` ( 1 - ( x ^ 2 ) ) ) ) = ( -u 1 / ( sqrt ` ( 1 - ( x ^ 2 ) ) ) ) ) |
| 108 |
61 107
|
eqtr3id |
|- ( x e. D -> ( 0 - ( 1 / ( sqrt ` ( 1 - ( x ^ 2 ) ) ) ) ) = ( -u 1 / ( sqrt ` ( 1 - ( x ^ 2 ) ) ) ) ) |
| 109 |
108
|
mpteq2ia |
|- ( x e. D |-> ( 0 - ( 1 / ( sqrt ` ( 1 - ( x ^ 2 ) ) ) ) ) ) = ( x e. D |-> ( -u 1 / ( sqrt ` ( 1 - ( x ^ 2 ) ) ) ) ) |
| 110 |
9 60 109
|
3eqtri |
|- ( CC _D ( arccos |` D ) ) = ( x e. D |-> ( -u 1 / ( sqrt ` ( 1 - ( x ^ 2 ) ) ) ) ) |