| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvasin.d |
⊢ 𝐷 = ( ℂ ∖ ( ( -∞ (,] - 1 ) ∪ ( 1 [,) +∞ ) ) ) |
| 2 |
|
df-acos |
⊢ arccos = ( 𝑥 ∈ ℂ ↦ ( ( π / 2 ) − ( arcsin ‘ 𝑥 ) ) ) |
| 3 |
2
|
reseq1i |
⊢ ( arccos ↾ 𝐷 ) = ( ( 𝑥 ∈ ℂ ↦ ( ( π / 2 ) − ( arcsin ‘ 𝑥 ) ) ) ↾ 𝐷 ) |
| 4 |
|
difss |
⊢ ( ℂ ∖ ( ( -∞ (,] - 1 ) ∪ ( 1 [,) +∞ ) ) ) ⊆ ℂ |
| 5 |
1 4
|
eqsstri |
⊢ 𝐷 ⊆ ℂ |
| 6 |
|
resmpt |
⊢ ( 𝐷 ⊆ ℂ → ( ( 𝑥 ∈ ℂ ↦ ( ( π / 2 ) − ( arcsin ‘ 𝑥 ) ) ) ↾ 𝐷 ) = ( 𝑥 ∈ 𝐷 ↦ ( ( π / 2 ) − ( arcsin ‘ 𝑥 ) ) ) ) |
| 7 |
5 6
|
ax-mp |
⊢ ( ( 𝑥 ∈ ℂ ↦ ( ( π / 2 ) − ( arcsin ‘ 𝑥 ) ) ) ↾ 𝐷 ) = ( 𝑥 ∈ 𝐷 ↦ ( ( π / 2 ) − ( arcsin ‘ 𝑥 ) ) ) |
| 8 |
3 7
|
eqtri |
⊢ ( arccos ↾ 𝐷 ) = ( 𝑥 ∈ 𝐷 ↦ ( ( π / 2 ) − ( arcsin ‘ 𝑥 ) ) ) |
| 9 |
8
|
oveq2i |
⊢ ( ℂ D ( arccos ↾ 𝐷 ) ) = ( ℂ D ( 𝑥 ∈ 𝐷 ↦ ( ( π / 2 ) − ( arcsin ‘ 𝑥 ) ) ) ) |
| 10 |
|
cnelprrecn |
⊢ ℂ ∈ { ℝ , ℂ } |
| 11 |
10
|
a1i |
⊢ ( ⊤ → ℂ ∈ { ℝ , ℂ } ) |
| 12 |
|
halfpire |
⊢ ( π / 2 ) ∈ ℝ |
| 13 |
12
|
recni |
⊢ ( π / 2 ) ∈ ℂ |
| 14 |
13
|
a1i |
⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝐷 ) → ( π / 2 ) ∈ ℂ ) |
| 15 |
|
c0ex |
⊢ 0 ∈ V |
| 16 |
15
|
a1i |
⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝐷 ) → 0 ∈ V ) |
| 17 |
13
|
a1i |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℂ ) → ( π / 2 ) ∈ ℂ ) |
| 18 |
15
|
a1i |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℂ ) → 0 ∈ V ) |
| 19 |
13
|
a1i |
⊢ ( ⊤ → ( π / 2 ) ∈ ℂ ) |
| 20 |
11 19
|
dvmptc |
⊢ ( ⊤ → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( π / 2 ) ) ) = ( 𝑥 ∈ ℂ ↦ 0 ) ) |
| 21 |
5
|
a1i |
⊢ ( ⊤ → 𝐷 ⊆ ℂ ) |
| 22 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 23 |
22
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 24 |
23
|
toponrestid |
⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
| 25 |
22
|
recld2 |
⊢ ℝ ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) |
| 26 |
|
neg1rr |
⊢ - 1 ∈ ℝ |
| 27 |
|
iocmnfcld |
⊢ ( - 1 ∈ ℝ → ( -∞ (,] - 1 ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |
| 28 |
26 27
|
ax-mp |
⊢ ( -∞ (,] - 1 ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) |
| 29 |
|
tgioo4 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
| 30 |
29
|
fveq2i |
⊢ ( Clsd ‘ ( topGen ‘ ran (,) ) ) = ( Clsd ‘ ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) |
| 31 |
28 30
|
eleqtri |
⊢ ( -∞ (,] - 1 ) ∈ ( Clsd ‘ ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) |
| 32 |
|
restcldr |
⊢ ( ( ℝ ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ∧ ( -∞ (,] - 1 ) ∈ ( Clsd ‘ ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) → ( -∞ (,] - 1 ) ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ) |
| 33 |
25 31 32
|
mp2an |
⊢ ( -∞ (,] - 1 ) ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) |
| 34 |
|
1re |
⊢ 1 ∈ ℝ |
| 35 |
|
icopnfcld |
⊢ ( 1 ∈ ℝ → ( 1 [,) +∞ ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |
| 36 |
34 35
|
ax-mp |
⊢ ( 1 [,) +∞ ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) |
| 37 |
36 30
|
eleqtri |
⊢ ( 1 [,) +∞ ) ∈ ( Clsd ‘ ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) |
| 38 |
|
restcldr |
⊢ ( ( ℝ ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ∧ ( 1 [,) +∞ ) ∈ ( Clsd ‘ ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) → ( 1 [,) +∞ ) ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ) |
| 39 |
25 37 38
|
mp2an |
⊢ ( 1 [,) +∞ ) ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) |
| 40 |
|
uncld |
⊢ ( ( ( -∞ (,] - 1 ) ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ∧ ( 1 [,) +∞ ) ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ) → ( ( -∞ (,] - 1 ) ∪ ( 1 [,) +∞ ) ) ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ) |
| 41 |
33 39 40
|
mp2an |
⊢ ( ( -∞ (,] - 1 ) ∪ ( 1 [,) +∞ ) ) ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) |
| 42 |
23
|
toponunii |
⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) |
| 43 |
42
|
cldopn |
⊢ ( ( ( -∞ (,] - 1 ) ∪ ( 1 [,) +∞ ) ) ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) → ( ℂ ∖ ( ( -∞ (,] - 1 ) ∪ ( 1 [,) +∞ ) ) ) ∈ ( TopOpen ‘ ℂfld ) ) |
| 44 |
41 43
|
ax-mp |
⊢ ( ℂ ∖ ( ( -∞ (,] - 1 ) ∪ ( 1 [,) +∞ ) ) ) ∈ ( TopOpen ‘ ℂfld ) |
| 45 |
1 44
|
eqeltri |
⊢ 𝐷 ∈ ( TopOpen ‘ ℂfld ) |
| 46 |
45
|
a1i |
⊢ ( ⊤ → 𝐷 ∈ ( TopOpen ‘ ℂfld ) ) |
| 47 |
11 17 18 20 21 24 22 46
|
dvmptres |
⊢ ( ⊤ → ( ℂ D ( 𝑥 ∈ 𝐷 ↦ ( π / 2 ) ) ) = ( 𝑥 ∈ 𝐷 ↦ 0 ) ) |
| 48 |
5
|
sseli |
⊢ ( 𝑥 ∈ 𝐷 → 𝑥 ∈ ℂ ) |
| 49 |
|
asincl |
⊢ ( 𝑥 ∈ ℂ → ( arcsin ‘ 𝑥 ) ∈ ℂ ) |
| 50 |
48 49
|
syl |
⊢ ( 𝑥 ∈ 𝐷 → ( arcsin ‘ 𝑥 ) ∈ ℂ ) |
| 51 |
50
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝐷 ) → ( arcsin ‘ 𝑥 ) ∈ ℂ ) |
| 52 |
|
ovexd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝐷 ) → ( 1 / ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) ) ∈ V ) |
| 53 |
|
asinf |
⊢ arcsin : ℂ ⟶ ℂ |
| 54 |
53
|
a1i |
⊢ ( ⊤ → arcsin : ℂ ⟶ ℂ ) |
| 55 |
54 21
|
feqresmpt |
⊢ ( ⊤ → ( arcsin ↾ 𝐷 ) = ( 𝑥 ∈ 𝐷 ↦ ( arcsin ‘ 𝑥 ) ) ) |
| 56 |
55
|
oveq2d |
⊢ ( ⊤ → ( ℂ D ( arcsin ↾ 𝐷 ) ) = ( ℂ D ( 𝑥 ∈ 𝐷 ↦ ( arcsin ‘ 𝑥 ) ) ) ) |
| 57 |
1
|
dvasin |
⊢ ( ℂ D ( arcsin ↾ 𝐷 ) ) = ( 𝑥 ∈ 𝐷 ↦ ( 1 / ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) ) ) |
| 58 |
56 57
|
eqtr3di |
⊢ ( ⊤ → ( ℂ D ( 𝑥 ∈ 𝐷 ↦ ( arcsin ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐷 ↦ ( 1 / ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) ) ) ) |
| 59 |
11 14 16 47 51 52 58
|
dvmptsub |
⊢ ( ⊤ → ( ℂ D ( 𝑥 ∈ 𝐷 ↦ ( ( π / 2 ) − ( arcsin ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ 𝐷 ↦ ( 0 − ( 1 / ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) ) ) ) ) |
| 60 |
59
|
mptru |
⊢ ( ℂ D ( 𝑥 ∈ 𝐷 ↦ ( ( π / 2 ) − ( arcsin ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ 𝐷 ↦ ( 0 − ( 1 / ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) ) ) ) |
| 61 |
|
df-neg |
⊢ - ( 1 / ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) ) = ( 0 − ( 1 / ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) ) ) |
| 62 |
|
1cnd |
⊢ ( 𝑥 ∈ 𝐷 → 1 ∈ ℂ ) |
| 63 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 64 |
48
|
sqcld |
⊢ ( 𝑥 ∈ 𝐷 → ( 𝑥 ↑ 2 ) ∈ ℂ ) |
| 65 |
|
subcl |
⊢ ( ( 1 ∈ ℂ ∧ ( 𝑥 ↑ 2 ) ∈ ℂ ) → ( 1 − ( 𝑥 ↑ 2 ) ) ∈ ℂ ) |
| 66 |
63 64 65
|
sylancr |
⊢ ( 𝑥 ∈ 𝐷 → ( 1 − ( 𝑥 ↑ 2 ) ) ∈ ℂ ) |
| 67 |
66
|
sqrtcld |
⊢ ( 𝑥 ∈ 𝐷 → ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) ∈ ℂ ) |
| 68 |
|
eldifn |
⊢ ( 𝑥 ∈ ( ℂ ∖ ( ( -∞ (,] - 1 ) ∪ ( 1 [,) +∞ ) ) ) → ¬ 𝑥 ∈ ( ( -∞ (,] - 1 ) ∪ ( 1 [,) +∞ ) ) ) |
| 69 |
68 1
|
eleq2s |
⊢ ( 𝑥 ∈ 𝐷 → ¬ 𝑥 ∈ ( ( -∞ (,] - 1 ) ∪ ( 1 [,) +∞ ) ) ) |
| 70 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
| 71 |
26
|
rexri |
⊢ - 1 ∈ ℝ* |
| 72 |
|
mnflt |
⊢ ( - 1 ∈ ℝ → -∞ < - 1 ) |
| 73 |
26 72
|
ax-mp |
⊢ -∞ < - 1 |
| 74 |
|
ubioc1 |
⊢ ( ( -∞ ∈ ℝ* ∧ - 1 ∈ ℝ* ∧ -∞ < - 1 ) → - 1 ∈ ( -∞ (,] - 1 ) ) |
| 75 |
70 71 73 74
|
mp3an |
⊢ - 1 ∈ ( -∞ (,] - 1 ) |
| 76 |
|
eleq1 |
⊢ ( 𝑥 = - 1 → ( 𝑥 ∈ ( -∞ (,] - 1 ) ↔ - 1 ∈ ( -∞ (,] - 1 ) ) ) |
| 77 |
75 76
|
mpbiri |
⊢ ( 𝑥 = - 1 → 𝑥 ∈ ( -∞ (,] - 1 ) ) |
| 78 |
34
|
rexri |
⊢ 1 ∈ ℝ* |
| 79 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 80 |
|
ltpnf |
⊢ ( 1 ∈ ℝ → 1 < +∞ ) |
| 81 |
34 80
|
ax-mp |
⊢ 1 < +∞ |
| 82 |
|
lbico1 |
⊢ ( ( 1 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 1 < +∞ ) → 1 ∈ ( 1 [,) +∞ ) ) |
| 83 |
78 79 81 82
|
mp3an |
⊢ 1 ∈ ( 1 [,) +∞ ) |
| 84 |
|
eleq1 |
⊢ ( 𝑥 = 1 → ( 𝑥 ∈ ( 1 [,) +∞ ) ↔ 1 ∈ ( 1 [,) +∞ ) ) ) |
| 85 |
83 84
|
mpbiri |
⊢ ( 𝑥 = 1 → 𝑥 ∈ ( 1 [,) +∞ ) ) |
| 86 |
77 85
|
orim12i |
⊢ ( ( 𝑥 = - 1 ∨ 𝑥 = 1 ) → ( 𝑥 ∈ ( -∞ (,] - 1 ) ∨ 𝑥 ∈ ( 1 [,) +∞ ) ) ) |
| 87 |
86
|
orcoms |
⊢ ( ( 𝑥 = 1 ∨ 𝑥 = - 1 ) → ( 𝑥 ∈ ( -∞ (,] - 1 ) ∨ 𝑥 ∈ ( 1 [,) +∞ ) ) ) |
| 88 |
|
elun |
⊢ ( 𝑥 ∈ ( ( -∞ (,] - 1 ) ∪ ( 1 [,) +∞ ) ) ↔ ( 𝑥 ∈ ( -∞ (,] - 1 ) ∨ 𝑥 ∈ ( 1 [,) +∞ ) ) ) |
| 89 |
87 88
|
sylibr |
⊢ ( ( 𝑥 = 1 ∨ 𝑥 = - 1 ) → 𝑥 ∈ ( ( -∞ (,] - 1 ) ∪ ( 1 [,) +∞ ) ) ) |
| 90 |
69 89
|
nsyl |
⊢ ( 𝑥 ∈ 𝐷 → ¬ ( 𝑥 = 1 ∨ 𝑥 = - 1 ) ) |
| 91 |
|
sq1 |
⊢ ( 1 ↑ 2 ) = 1 |
| 92 |
|
1cnd |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) = 0 ) → 1 ∈ ℂ ) |
| 93 |
|
sqcl |
⊢ ( 𝑥 ∈ ℂ → ( 𝑥 ↑ 2 ) ∈ ℂ ) |
| 94 |
93
|
adantr |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) = 0 ) → ( 𝑥 ↑ 2 ) ∈ ℂ ) |
| 95 |
63 93 65
|
sylancr |
⊢ ( 𝑥 ∈ ℂ → ( 1 − ( 𝑥 ↑ 2 ) ) ∈ ℂ ) |
| 96 |
95
|
adantr |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) = 0 ) → ( 1 − ( 𝑥 ↑ 2 ) ) ∈ ℂ ) |
| 97 |
|
simpr |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) = 0 ) → ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) = 0 ) |
| 98 |
96 97
|
sqr00d |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) = 0 ) → ( 1 − ( 𝑥 ↑ 2 ) ) = 0 ) |
| 99 |
92 94 98
|
subeq0d |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) = 0 ) → 1 = ( 𝑥 ↑ 2 ) ) |
| 100 |
91 99
|
eqtr2id |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) = 0 ) → ( 𝑥 ↑ 2 ) = ( 1 ↑ 2 ) ) |
| 101 |
100
|
ex |
⊢ ( 𝑥 ∈ ℂ → ( ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) = 0 → ( 𝑥 ↑ 2 ) = ( 1 ↑ 2 ) ) ) |
| 102 |
|
sqeqor |
⊢ ( ( 𝑥 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑥 ↑ 2 ) = ( 1 ↑ 2 ) ↔ ( 𝑥 = 1 ∨ 𝑥 = - 1 ) ) ) |
| 103 |
63 102
|
mpan2 |
⊢ ( 𝑥 ∈ ℂ → ( ( 𝑥 ↑ 2 ) = ( 1 ↑ 2 ) ↔ ( 𝑥 = 1 ∨ 𝑥 = - 1 ) ) ) |
| 104 |
101 103
|
sylibd |
⊢ ( 𝑥 ∈ ℂ → ( ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) = 0 → ( 𝑥 = 1 ∨ 𝑥 = - 1 ) ) ) |
| 105 |
104
|
necon3bd |
⊢ ( 𝑥 ∈ ℂ → ( ¬ ( 𝑥 = 1 ∨ 𝑥 = - 1 ) → ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) ≠ 0 ) ) |
| 106 |
48 90 105
|
sylc |
⊢ ( 𝑥 ∈ 𝐷 → ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) ≠ 0 ) |
| 107 |
62 67 106
|
divnegd |
⊢ ( 𝑥 ∈ 𝐷 → - ( 1 / ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) ) = ( - 1 / ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) ) ) |
| 108 |
61 107
|
eqtr3id |
⊢ ( 𝑥 ∈ 𝐷 → ( 0 − ( 1 / ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) ) ) = ( - 1 / ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) ) ) |
| 109 |
108
|
mpteq2ia |
⊢ ( 𝑥 ∈ 𝐷 ↦ ( 0 − ( 1 / ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) ) ) ) = ( 𝑥 ∈ 𝐷 ↦ ( - 1 / ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) ) ) |
| 110 |
9 60 109
|
3eqtri |
⊢ ( ℂ D ( arccos ↾ 𝐷 ) ) = ( 𝑥 ∈ 𝐷 ↦ ( - 1 / ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) ) ) |