Step |
Hyp |
Ref |
Expression |
1 |
|
reelprrecn |
|- RR e. { RR , CC } |
2 |
1
|
a1i |
|- ( R e. RR+ -> RR e. { RR , CC } ) |
3 |
|
elioore |
|- ( t e. ( -u R (,) R ) -> t e. RR ) |
4 |
3
|
recnd |
|- ( t e. ( -u R (,) R ) -> t e. CC ) |
5 |
4
|
adantl |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> t e. CC ) |
6 |
|
rpcn |
|- ( R e. RR+ -> R e. CC ) |
7 |
6
|
adantr |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> R e. CC ) |
8 |
|
rpne0 |
|- ( R e. RR+ -> R =/= 0 ) |
9 |
8
|
adantr |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> R =/= 0 ) |
10 |
5 7 9
|
divcld |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( t / R ) e. CC ) |
11 |
|
asincl |
|- ( ( t / R ) e. CC -> ( arcsin ` ( t / R ) ) e. CC ) |
12 |
10 11
|
syl |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( arcsin ` ( t / R ) ) e. CC ) |
13 |
|
1cnd |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> 1 e. CC ) |
14 |
10
|
sqcld |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( ( t / R ) ^ 2 ) e. CC ) |
15 |
13 14
|
subcld |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( 1 - ( ( t / R ) ^ 2 ) ) e. CC ) |
16 |
15
|
sqrtcld |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) e. CC ) |
17 |
10 16
|
mulcld |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( ( t / R ) x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) e. CC ) |
18 |
12 17
|
addcld |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( ( arcsin ` ( t / R ) ) + ( ( t / R ) x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) e. CC ) |
19 |
|
ovexd |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( ( 2 x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) x. ( 1 / R ) ) e. _V ) |
20 |
|
rpre |
|- ( R e. RR+ -> R e. RR ) |
21 |
20
|
renegcld |
|- ( R e. RR+ -> -u R e. RR ) |
22 |
21
|
rexrd |
|- ( R e. RR+ -> -u R e. RR* ) |
23 |
|
rpxr |
|- ( R e. RR+ -> R e. RR* ) |
24 |
|
elioo2 |
|- ( ( -u R e. RR* /\ R e. RR* ) -> ( t e. ( -u R (,) R ) <-> ( t e. RR /\ -u R < t /\ t < R ) ) ) |
25 |
22 23 24
|
syl2anc |
|- ( R e. RR+ -> ( t e. ( -u R (,) R ) <-> ( t e. RR /\ -u R < t /\ t < R ) ) ) |
26 |
|
simpr |
|- ( ( R e. RR+ /\ t e. RR ) -> t e. RR ) |
27 |
20
|
adantr |
|- ( ( R e. RR+ /\ t e. RR ) -> R e. RR ) |
28 |
8
|
adantr |
|- ( ( R e. RR+ /\ t e. RR ) -> R =/= 0 ) |
29 |
26 27 28
|
redivcld |
|- ( ( R e. RR+ /\ t e. RR ) -> ( t / R ) e. RR ) |
30 |
29
|
a1d |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( -u R < t /\ t < R ) -> ( t / R ) e. RR ) ) |
31 |
6
|
mulm1d |
|- ( R e. RR+ -> ( -u 1 x. R ) = -u R ) |
32 |
31
|
adantr |
|- ( ( R e. RR+ /\ t e. RR ) -> ( -u 1 x. R ) = -u R ) |
33 |
32
|
breq1d |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( -u 1 x. R ) < t <-> -u R < t ) ) |
34 |
|
neg1rr |
|- -u 1 e. RR |
35 |
34
|
a1i |
|- ( ( R e. RR+ /\ t e. RR ) -> -u 1 e. RR ) |
36 |
|
simpl |
|- ( ( R e. RR+ /\ t e. RR ) -> R e. RR+ ) |
37 |
35 26 36
|
ltmuldivd |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( -u 1 x. R ) < t <-> -u 1 < ( t / R ) ) ) |
38 |
33 37
|
bitr3d |
|- ( ( R e. RR+ /\ t e. RR ) -> ( -u R < t <-> -u 1 < ( t / R ) ) ) |
39 |
38
|
biimpd |
|- ( ( R e. RR+ /\ t e. RR ) -> ( -u R < t -> -u 1 < ( t / R ) ) ) |
40 |
39
|
adantrd |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( -u R < t /\ t < R ) -> -u 1 < ( t / R ) ) ) |
41 |
|
1red |
|- ( ( R e. RR+ /\ t e. RR ) -> 1 e. RR ) |
42 |
26 41 36
|
ltdivmuld |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( t / R ) < 1 <-> t < ( R x. 1 ) ) ) |
43 |
6
|
mulid1d |
|- ( R e. RR+ -> ( R x. 1 ) = R ) |
44 |
43
|
adantr |
|- ( ( R e. RR+ /\ t e. RR ) -> ( R x. 1 ) = R ) |
45 |
44
|
breq2d |
|- ( ( R e. RR+ /\ t e. RR ) -> ( t < ( R x. 1 ) <-> t < R ) ) |
46 |
42 45
|
bitr2d |
|- ( ( R e. RR+ /\ t e. RR ) -> ( t < R <-> ( t / R ) < 1 ) ) |
47 |
46
|
biimpd |
|- ( ( R e. RR+ /\ t e. RR ) -> ( t < R -> ( t / R ) < 1 ) ) |
48 |
47
|
adantld |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( -u R < t /\ t < R ) -> ( t / R ) < 1 ) ) |
49 |
30 40 48
|
3jcad |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( -u R < t /\ t < R ) -> ( ( t / R ) e. RR /\ -u 1 < ( t / R ) /\ ( t / R ) < 1 ) ) ) |
50 |
49
|
exp4b |
|- ( R e. RR+ -> ( t e. RR -> ( -u R < t -> ( t < R -> ( ( t / R ) e. RR /\ -u 1 < ( t / R ) /\ ( t / R ) < 1 ) ) ) ) ) |
51 |
50
|
3impd |
|- ( R e. RR+ -> ( ( t e. RR /\ -u R < t /\ t < R ) -> ( ( t / R ) e. RR /\ -u 1 < ( t / R ) /\ ( t / R ) < 1 ) ) ) |
52 |
25 51
|
sylbid |
|- ( R e. RR+ -> ( t e. ( -u R (,) R ) -> ( ( t / R ) e. RR /\ -u 1 < ( t / R ) /\ ( t / R ) < 1 ) ) ) |
53 |
52
|
imp |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( ( t / R ) e. RR /\ -u 1 < ( t / R ) /\ ( t / R ) < 1 ) ) |
54 |
34
|
rexri |
|- -u 1 e. RR* |
55 |
|
1xr |
|- 1 e. RR* |
56 |
|
elioo2 |
|- ( ( -u 1 e. RR* /\ 1 e. RR* ) -> ( ( t / R ) e. ( -u 1 (,) 1 ) <-> ( ( t / R ) e. RR /\ -u 1 < ( t / R ) /\ ( t / R ) < 1 ) ) ) |
57 |
54 55 56
|
mp2an |
|- ( ( t / R ) e. ( -u 1 (,) 1 ) <-> ( ( t / R ) e. RR /\ -u 1 < ( t / R ) /\ ( t / R ) < 1 ) ) |
58 |
53 57
|
sylibr |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( t / R ) e. ( -u 1 (,) 1 ) ) |
59 |
|
ovexd |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( 1 / R ) e. _V ) |
60 |
|
elioore |
|- ( u e. ( -u 1 (,) 1 ) -> u e. RR ) |
61 |
60
|
recnd |
|- ( u e. ( -u 1 (,) 1 ) -> u e. CC ) |
62 |
|
asincl |
|- ( u e. CC -> ( arcsin ` u ) e. CC ) |
63 |
|
id |
|- ( u e. CC -> u e. CC ) |
64 |
|
1cnd |
|- ( u e. CC -> 1 e. CC ) |
65 |
|
sqcl |
|- ( u e. CC -> ( u ^ 2 ) e. CC ) |
66 |
64 65
|
subcld |
|- ( u e. CC -> ( 1 - ( u ^ 2 ) ) e. CC ) |
67 |
66
|
sqrtcld |
|- ( u e. CC -> ( sqrt ` ( 1 - ( u ^ 2 ) ) ) e. CC ) |
68 |
63 67
|
mulcld |
|- ( u e. CC -> ( u x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) e. CC ) |
69 |
62 68
|
addcld |
|- ( u e. CC -> ( ( arcsin ` u ) + ( u x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) e. CC ) |
70 |
61 69
|
syl |
|- ( u e. ( -u 1 (,) 1 ) -> ( ( arcsin ` u ) + ( u x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) e. CC ) |
71 |
70
|
adantl |
|- ( ( R e. RR+ /\ u e. ( -u 1 (,) 1 ) ) -> ( ( arcsin ` u ) + ( u x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) e. CC ) |
72 |
|
ovexd |
|- ( ( R e. RR+ /\ u e. ( -u 1 (,) 1 ) ) -> ( 2 x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) e. _V ) |
73 |
|
recn |
|- ( t e. RR -> t e. CC ) |
74 |
73
|
adantl |
|- ( ( R e. RR+ /\ t e. RR ) -> t e. CC ) |
75 |
|
1cnd |
|- ( ( R e. RR+ /\ t e. RR ) -> 1 e. CC ) |
76 |
2
|
dvmptid |
|- ( R e. RR+ -> ( RR _D ( t e. RR |-> t ) ) = ( t e. RR |-> 1 ) ) |
77 |
|
ioossre |
|- ( -u R (,) R ) C_ RR |
78 |
77
|
a1i |
|- ( R e. RR+ -> ( -u R (,) R ) C_ RR ) |
79 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
80 |
79
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
81 |
|
iooretop |
|- ( -u R (,) R ) e. ( topGen ` ran (,) ) |
82 |
81
|
a1i |
|- ( R e. RR+ -> ( -u R (,) R ) e. ( topGen ` ran (,) ) ) |
83 |
2 74 75 76 78 80 79 82
|
dvmptres |
|- ( R e. RR+ -> ( RR _D ( t e. ( -u R (,) R ) |-> t ) ) = ( t e. ( -u R (,) R ) |-> 1 ) ) |
84 |
2 5 13 83 6 8
|
dvmptdivc |
|- ( R e. RR+ -> ( RR _D ( t e. ( -u R (,) R ) |-> ( t / R ) ) ) = ( t e. ( -u R (,) R ) |-> ( 1 / R ) ) ) |
85 |
61 62
|
syl |
|- ( u e. ( -u 1 (,) 1 ) -> ( arcsin ` u ) e. CC ) |
86 |
85
|
adantl |
|- ( ( R e. RR+ /\ u e. ( -u 1 (,) 1 ) ) -> ( arcsin ` u ) e. CC ) |
87 |
|
ovexd |
|- ( ( R e. RR+ /\ u e. ( -u 1 (,) 1 ) ) -> ( 1 / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) e. _V ) |
88 |
|
asinf |
|- arcsin : CC --> CC |
89 |
88
|
a1i |
|- ( R e. RR+ -> arcsin : CC --> CC ) |
90 |
|
ioossre |
|- ( -u 1 (,) 1 ) C_ RR |
91 |
|
ax-resscn |
|- RR C_ CC |
92 |
90 91
|
sstri |
|- ( -u 1 (,) 1 ) C_ CC |
93 |
92
|
a1i |
|- ( R e. RR+ -> ( -u 1 (,) 1 ) C_ CC ) |
94 |
89 93
|
feqresmpt |
|- ( R e. RR+ -> ( arcsin |` ( -u 1 (,) 1 ) ) = ( u e. ( -u 1 (,) 1 ) |-> ( arcsin ` u ) ) ) |
95 |
94
|
oveq2d |
|- ( R e. RR+ -> ( RR _D ( arcsin |` ( -u 1 (,) 1 ) ) ) = ( RR _D ( u e. ( -u 1 (,) 1 ) |-> ( arcsin ` u ) ) ) ) |
96 |
|
dvreasin |
|- ( RR _D ( arcsin |` ( -u 1 (,) 1 ) ) ) = ( u e. ( -u 1 (,) 1 ) |-> ( 1 / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) |
97 |
95 96
|
eqtr3di |
|- ( R e. RR+ -> ( RR _D ( u e. ( -u 1 (,) 1 ) |-> ( arcsin ` u ) ) ) = ( u e. ( -u 1 (,) 1 ) |-> ( 1 / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) ) |
98 |
61 68
|
syl |
|- ( u e. ( -u 1 (,) 1 ) -> ( u x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) e. CC ) |
99 |
98
|
adantl |
|- ( ( R e. RR+ /\ u e. ( -u 1 (,) 1 ) ) -> ( u x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) e. CC ) |
100 |
|
ovexd |
|- ( ( R e. RR+ /\ u e. ( -u 1 (,) 1 ) ) -> ( ( 1 x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) + ( ( -u u / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) x. u ) ) e. _V ) |
101 |
61
|
adantl |
|- ( ( R e. RR+ /\ u e. ( -u 1 (,) 1 ) ) -> u e. CC ) |
102 |
|
1cnd |
|- ( ( R e. RR+ /\ u e. ( -u 1 (,) 1 ) ) -> 1 e. CC ) |
103 |
|
recn |
|- ( u e. RR -> u e. CC ) |
104 |
103
|
adantl |
|- ( ( R e. RR+ /\ u e. RR ) -> u e. CC ) |
105 |
|
1cnd |
|- ( ( R e. RR+ /\ u e. RR ) -> 1 e. CC ) |
106 |
2
|
dvmptid |
|- ( R e. RR+ -> ( RR _D ( u e. RR |-> u ) ) = ( u e. RR |-> 1 ) ) |
107 |
90
|
a1i |
|- ( R e. RR+ -> ( -u 1 (,) 1 ) C_ RR ) |
108 |
|
iooretop |
|- ( -u 1 (,) 1 ) e. ( topGen ` ran (,) ) |
109 |
108
|
a1i |
|- ( R e. RR+ -> ( -u 1 (,) 1 ) e. ( topGen ` ran (,) ) ) |
110 |
2 104 105 106 107 80 79 109
|
dvmptres |
|- ( R e. RR+ -> ( RR _D ( u e. ( -u 1 (,) 1 ) |-> u ) ) = ( u e. ( -u 1 (,) 1 ) |-> 1 ) ) |
111 |
61 67
|
syl |
|- ( u e. ( -u 1 (,) 1 ) -> ( sqrt ` ( 1 - ( u ^ 2 ) ) ) e. CC ) |
112 |
111
|
adantl |
|- ( ( R e. RR+ /\ u e. ( -u 1 (,) 1 ) ) -> ( sqrt ` ( 1 - ( u ^ 2 ) ) ) e. CC ) |
113 |
|
ovexd |
|- ( ( R e. RR+ /\ u e. ( -u 1 (,) 1 ) ) -> ( -u u / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) e. _V ) |
114 |
|
1red |
|- ( u e. ( -u 1 (,) 1 ) -> 1 e. RR ) |
115 |
60
|
resqcld |
|- ( u e. ( -u 1 (,) 1 ) -> ( u ^ 2 ) e. RR ) |
116 |
114 115
|
resubcld |
|- ( u e. ( -u 1 (,) 1 ) -> ( 1 - ( u ^ 2 ) ) e. RR ) |
117 |
|
elioo2 |
|- ( ( -u 1 e. RR* /\ 1 e. RR* ) -> ( u e. ( -u 1 (,) 1 ) <-> ( u e. RR /\ -u 1 < u /\ u < 1 ) ) ) |
118 |
54 55 117
|
mp2an |
|- ( u e. ( -u 1 (,) 1 ) <-> ( u e. RR /\ -u 1 < u /\ u < 1 ) ) |
119 |
|
id |
|- ( u e. RR -> u e. RR ) |
120 |
|
1red |
|- ( u e. RR -> 1 e. RR ) |
121 |
119 120
|
absltd |
|- ( u e. RR -> ( ( abs ` u ) < 1 <-> ( -u 1 < u /\ u < 1 ) ) ) |
122 |
103
|
abscld |
|- ( u e. RR -> ( abs ` u ) e. RR ) |
123 |
103
|
absge0d |
|- ( u e. RR -> 0 <_ ( abs ` u ) ) |
124 |
|
0le1 |
|- 0 <_ 1 |
125 |
124
|
a1i |
|- ( u e. RR -> 0 <_ 1 ) |
126 |
122 120 123 125
|
lt2sqd |
|- ( u e. RR -> ( ( abs ` u ) < 1 <-> ( ( abs ` u ) ^ 2 ) < ( 1 ^ 2 ) ) ) |
127 |
|
absresq |
|- ( u e. RR -> ( ( abs ` u ) ^ 2 ) = ( u ^ 2 ) ) |
128 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
129 |
128
|
a1i |
|- ( u e. RR -> ( 1 ^ 2 ) = 1 ) |
130 |
127 129
|
breq12d |
|- ( u e. RR -> ( ( ( abs ` u ) ^ 2 ) < ( 1 ^ 2 ) <-> ( u ^ 2 ) < 1 ) ) |
131 |
|
resqcl |
|- ( u e. RR -> ( u ^ 2 ) e. RR ) |
132 |
131 120
|
posdifd |
|- ( u e. RR -> ( ( u ^ 2 ) < 1 <-> 0 < ( 1 - ( u ^ 2 ) ) ) ) |
133 |
126 130 132
|
3bitrd |
|- ( u e. RR -> ( ( abs ` u ) < 1 <-> 0 < ( 1 - ( u ^ 2 ) ) ) ) |
134 |
121 133
|
bitr3d |
|- ( u e. RR -> ( ( -u 1 < u /\ u < 1 ) <-> 0 < ( 1 - ( u ^ 2 ) ) ) ) |
135 |
134
|
biimpd |
|- ( u e. RR -> ( ( -u 1 < u /\ u < 1 ) -> 0 < ( 1 - ( u ^ 2 ) ) ) ) |
136 |
135
|
3impib |
|- ( ( u e. RR /\ -u 1 < u /\ u < 1 ) -> 0 < ( 1 - ( u ^ 2 ) ) ) |
137 |
118 136
|
sylbi |
|- ( u e. ( -u 1 (,) 1 ) -> 0 < ( 1 - ( u ^ 2 ) ) ) |
138 |
116 137
|
elrpd |
|- ( u e. ( -u 1 (,) 1 ) -> ( 1 - ( u ^ 2 ) ) e. RR+ ) |
139 |
138
|
adantl |
|- ( ( R e. RR+ /\ u e. ( -u 1 (,) 1 ) ) -> ( 1 - ( u ^ 2 ) ) e. RR+ ) |
140 |
|
negex |
|- -u ( 2 x. u ) e. _V |
141 |
140
|
a1i |
|- ( ( R e. RR+ /\ u e. ( -u 1 (,) 1 ) ) -> -u ( 2 x. u ) e. _V ) |
142 |
|
rpcn |
|- ( v e. RR+ -> v e. CC ) |
143 |
142
|
sqrtcld |
|- ( v e. RR+ -> ( sqrt ` v ) e. CC ) |
144 |
143
|
adantl |
|- ( ( R e. RR+ /\ v e. RR+ ) -> ( sqrt ` v ) e. CC ) |
145 |
|
ovexd |
|- ( ( R e. RR+ /\ v e. RR+ ) -> ( 1 / ( 2 x. ( sqrt ` v ) ) ) e. _V ) |
146 |
|
1cnd |
|- ( u e. RR -> 1 e. CC ) |
147 |
103
|
sqcld |
|- ( u e. RR -> ( u ^ 2 ) e. CC ) |
148 |
146 147
|
subcld |
|- ( u e. RR -> ( 1 - ( u ^ 2 ) ) e. CC ) |
149 |
148
|
adantl |
|- ( ( R e. RR+ /\ u e. RR ) -> ( 1 - ( u ^ 2 ) ) e. CC ) |
150 |
140
|
a1i |
|- ( ( R e. RR+ /\ u e. RR ) -> -u ( 2 x. u ) e. _V ) |
151 |
|
0red |
|- ( ( R e. RR+ /\ u e. RR ) -> 0 e. RR ) |
152 |
|
1cnd |
|- ( R e. RR+ -> 1 e. CC ) |
153 |
2 152
|
dvmptc |
|- ( R e. RR+ -> ( RR _D ( u e. RR |-> 1 ) ) = ( u e. RR |-> 0 ) ) |
154 |
147
|
adantl |
|- ( ( R e. RR+ /\ u e. RR ) -> ( u ^ 2 ) e. CC ) |
155 |
|
ovexd |
|- ( ( R e. RR+ /\ u e. RR ) -> ( 2 x. u ) e. _V ) |
156 |
79
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
157 |
|
toponmax |
|- ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) -> CC e. ( TopOpen ` CCfld ) ) |
158 |
156 157
|
mp1i |
|- ( R e. RR+ -> CC e. ( TopOpen ` CCfld ) ) |
159 |
|
df-ss |
|- ( RR C_ CC <-> ( RR i^i CC ) = RR ) |
160 |
91 159
|
mpbi |
|- ( RR i^i CC ) = RR |
161 |
160
|
a1i |
|- ( R e. RR+ -> ( RR i^i CC ) = RR ) |
162 |
65
|
adantl |
|- ( ( R e. RR+ /\ u e. CC ) -> ( u ^ 2 ) e. CC ) |
163 |
|
ovexd |
|- ( ( R e. RR+ /\ u e. CC ) -> ( 2 x. u ) e. _V ) |
164 |
|
2nn |
|- 2 e. NN |
165 |
|
dvexp |
|- ( 2 e. NN -> ( CC _D ( u e. CC |-> ( u ^ 2 ) ) ) = ( u e. CC |-> ( 2 x. ( u ^ ( 2 - 1 ) ) ) ) ) |
166 |
164 165
|
ax-mp |
|- ( CC _D ( u e. CC |-> ( u ^ 2 ) ) ) = ( u e. CC |-> ( 2 x. ( u ^ ( 2 - 1 ) ) ) ) |
167 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
168 |
167
|
oveq2i |
|- ( u ^ ( 2 - 1 ) ) = ( u ^ 1 ) |
169 |
|
exp1 |
|- ( u e. CC -> ( u ^ 1 ) = u ) |
170 |
168 169
|
syl5eq |
|- ( u e. CC -> ( u ^ ( 2 - 1 ) ) = u ) |
171 |
170
|
oveq2d |
|- ( u e. CC -> ( 2 x. ( u ^ ( 2 - 1 ) ) ) = ( 2 x. u ) ) |
172 |
171
|
mpteq2ia |
|- ( u e. CC |-> ( 2 x. ( u ^ ( 2 - 1 ) ) ) ) = ( u e. CC |-> ( 2 x. u ) ) |
173 |
166 172
|
eqtri |
|- ( CC _D ( u e. CC |-> ( u ^ 2 ) ) ) = ( u e. CC |-> ( 2 x. u ) ) |
174 |
173
|
a1i |
|- ( R e. RR+ -> ( CC _D ( u e. CC |-> ( u ^ 2 ) ) ) = ( u e. CC |-> ( 2 x. u ) ) ) |
175 |
79 2 158 161 162 163 174
|
dvmptres3 |
|- ( R e. RR+ -> ( RR _D ( u e. RR |-> ( u ^ 2 ) ) ) = ( u e. RR |-> ( 2 x. u ) ) ) |
176 |
2 105 151 153 154 155 175
|
dvmptsub |
|- ( R e. RR+ -> ( RR _D ( u e. RR |-> ( 1 - ( u ^ 2 ) ) ) ) = ( u e. RR |-> ( 0 - ( 2 x. u ) ) ) ) |
177 |
|
df-neg |
|- -u ( 2 x. u ) = ( 0 - ( 2 x. u ) ) |
178 |
177
|
mpteq2i |
|- ( u e. RR |-> -u ( 2 x. u ) ) = ( u e. RR |-> ( 0 - ( 2 x. u ) ) ) |
179 |
176 178
|
eqtr4di |
|- ( R e. RR+ -> ( RR _D ( u e. RR |-> ( 1 - ( u ^ 2 ) ) ) ) = ( u e. RR |-> -u ( 2 x. u ) ) ) |
180 |
2 149 150 179 107 80 79 109
|
dvmptres |
|- ( R e. RR+ -> ( RR _D ( u e. ( -u 1 (,) 1 ) |-> ( 1 - ( u ^ 2 ) ) ) ) = ( u e. ( -u 1 (,) 1 ) |-> -u ( 2 x. u ) ) ) |
181 |
|
dvsqrt |
|- ( RR _D ( v e. RR+ |-> ( sqrt ` v ) ) ) = ( v e. RR+ |-> ( 1 / ( 2 x. ( sqrt ` v ) ) ) ) |
182 |
181
|
a1i |
|- ( R e. RR+ -> ( RR _D ( v e. RR+ |-> ( sqrt ` v ) ) ) = ( v e. RR+ |-> ( 1 / ( 2 x. ( sqrt ` v ) ) ) ) ) |
183 |
|
fveq2 |
|- ( v = ( 1 - ( u ^ 2 ) ) -> ( sqrt ` v ) = ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) |
184 |
183
|
oveq2d |
|- ( v = ( 1 - ( u ^ 2 ) ) -> ( 2 x. ( sqrt ` v ) ) = ( 2 x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) |
185 |
184
|
oveq2d |
|- ( v = ( 1 - ( u ^ 2 ) ) -> ( 1 / ( 2 x. ( sqrt ` v ) ) ) = ( 1 / ( 2 x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) ) |
186 |
2 2 139 141 144 145 180 182 183 185
|
dvmptco |
|- ( R e. RR+ -> ( RR _D ( u e. ( -u 1 (,) 1 ) |-> ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) = ( u e. ( -u 1 (,) 1 ) |-> ( ( 1 / ( 2 x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) x. -u ( 2 x. u ) ) ) ) |
187 |
|
2cnd |
|- ( u e. ( -u 1 (,) 1 ) -> 2 e. CC ) |
188 |
187 61
|
mulneg2d |
|- ( u e. ( -u 1 (,) 1 ) -> ( 2 x. -u u ) = -u ( 2 x. u ) ) |
189 |
188
|
oveq1d |
|- ( u e. ( -u 1 (,) 1 ) -> ( ( 2 x. -u u ) / ( 2 x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) = ( -u ( 2 x. u ) / ( 2 x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) ) |
190 |
61
|
negcld |
|- ( u e. ( -u 1 (,) 1 ) -> -u u e. CC ) |
191 |
137
|
gt0ne0d |
|- ( u e. ( -u 1 (,) 1 ) -> ( 1 - ( u ^ 2 ) ) =/= 0 ) |
192 |
61 66
|
syl |
|- ( u e. ( -u 1 (,) 1 ) -> ( 1 - ( u ^ 2 ) ) e. CC ) |
193 |
192
|
adantr |
|- ( ( u e. ( -u 1 (,) 1 ) /\ ( sqrt ` ( 1 - ( u ^ 2 ) ) ) = 0 ) -> ( 1 - ( u ^ 2 ) ) e. CC ) |
194 |
|
simpr |
|- ( ( u e. ( -u 1 (,) 1 ) /\ ( sqrt ` ( 1 - ( u ^ 2 ) ) ) = 0 ) -> ( sqrt ` ( 1 - ( u ^ 2 ) ) ) = 0 ) |
195 |
193 194
|
sqr00d |
|- ( ( u e. ( -u 1 (,) 1 ) /\ ( sqrt ` ( 1 - ( u ^ 2 ) ) ) = 0 ) -> ( 1 - ( u ^ 2 ) ) = 0 ) |
196 |
195
|
ex |
|- ( u e. ( -u 1 (,) 1 ) -> ( ( sqrt ` ( 1 - ( u ^ 2 ) ) ) = 0 -> ( 1 - ( u ^ 2 ) ) = 0 ) ) |
197 |
196
|
necon3d |
|- ( u e. ( -u 1 (,) 1 ) -> ( ( 1 - ( u ^ 2 ) ) =/= 0 -> ( sqrt ` ( 1 - ( u ^ 2 ) ) ) =/= 0 ) ) |
198 |
191 197
|
mpd |
|- ( u e. ( -u 1 (,) 1 ) -> ( sqrt ` ( 1 - ( u ^ 2 ) ) ) =/= 0 ) |
199 |
|
2ne0 |
|- 2 =/= 0 |
200 |
199
|
a1i |
|- ( u e. ( -u 1 (,) 1 ) -> 2 =/= 0 ) |
201 |
190 111 187 198 200
|
divcan5d |
|- ( u e. ( -u 1 (,) 1 ) -> ( ( 2 x. -u u ) / ( 2 x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) = ( -u u / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) |
202 |
187 61
|
mulcld |
|- ( u e. ( -u 1 (,) 1 ) -> ( 2 x. u ) e. CC ) |
203 |
202
|
negcld |
|- ( u e. ( -u 1 (,) 1 ) -> -u ( 2 x. u ) e. CC ) |
204 |
187 111
|
mulcld |
|- ( u e. ( -u 1 (,) 1 ) -> ( 2 x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) e. CC ) |
205 |
187 111 200 198
|
mulne0d |
|- ( u e. ( -u 1 (,) 1 ) -> ( 2 x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) =/= 0 ) |
206 |
203 204 205
|
divrec2d |
|- ( u e. ( -u 1 (,) 1 ) -> ( -u ( 2 x. u ) / ( 2 x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) = ( ( 1 / ( 2 x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) x. -u ( 2 x. u ) ) ) |
207 |
189 201 206
|
3eqtr3rd |
|- ( u e. ( -u 1 (,) 1 ) -> ( ( 1 / ( 2 x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) x. -u ( 2 x. u ) ) = ( -u u / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) |
208 |
207
|
mpteq2ia |
|- ( u e. ( -u 1 (,) 1 ) |-> ( ( 1 / ( 2 x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) x. -u ( 2 x. u ) ) ) = ( u e. ( -u 1 (,) 1 ) |-> ( -u u / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) |
209 |
186 208
|
eqtrdi |
|- ( R e. RR+ -> ( RR _D ( u e. ( -u 1 (,) 1 ) |-> ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) = ( u e. ( -u 1 (,) 1 ) |-> ( -u u / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) ) |
210 |
2 101 102 110 112 113 209
|
dvmptmul |
|- ( R e. RR+ -> ( RR _D ( u e. ( -u 1 (,) 1 ) |-> ( u x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) ) = ( u e. ( -u 1 (,) 1 ) |-> ( ( 1 x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) + ( ( -u u / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) x. u ) ) ) ) |
211 |
2 86 87 97 99 100 210
|
dvmptadd |
|- ( R e. RR+ -> ( RR _D ( u e. ( -u 1 (,) 1 ) |-> ( ( arcsin ` u ) + ( u x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) ) ) = ( u e. ( -u 1 (,) 1 ) |-> ( ( 1 / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) + ( ( 1 x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) + ( ( -u u / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) x. u ) ) ) ) ) |
212 |
111
|
mulid2d |
|- ( u e. ( -u 1 (,) 1 ) -> ( 1 x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) = ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) |
213 |
190 111 198
|
divcld |
|- ( u e. ( -u 1 (,) 1 ) -> ( -u u / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) e. CC ) |
214 |
213 61
|
mulcomd |
|- ( u e. ( -u 1 (,) 1 ) -> ( ( -u u / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) x. u ) = ( u x. ( -u u / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) ) |
215 |
61 190 111 198
|
divassd |
|- ( u e. ( -u 1 (,) 1 ) -> ( ( u x. -u u ) / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) = ( u x. ( -u u / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) ) |
216 |
61 61
|
mulneg2d |
|- ( u e. ( -u 1 (,) 1 ) -> ( u x. -u u ) = -u ( u x. u ) ) |
217 |
61
|
sqvald |
|- ( u e. ( -u 1 (,) 1 ) -> ( u ^ 2 ) = ( u x. u ) ) |
218 |
217
|
negeqd |
|- ( u e. ( -u 1 (,) 1 ) -> -u ( u ^ 2 ) = -u ( u x. u ) ) |
219 |
216 218
|
eqtr4d |
|- ( u e. ( -u 1 (,) 1 ) -> ( u x. -u u ) = -u ( u ^ 2 ) ) |
220 |
219
|
oveq1d |
|- ( u e. ( -u 1 (,) 1 ) -> ( ( u x. -u u ) / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) = ( -u ( u ^ 2 ) / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) |
221 |
214 215 220
|
3eqtr2d |
|- ( u e. ( -u 1 (,) 1 ) -> ( ( -u u / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) x. u ) = ( -u ( u ^ 2 ) / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) |
222 |
212 221
|
oveq12d |
|- ( u e. ( -u 1 (,) 1 ) -> ( ( 1 x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) + ( ( -u u / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) x. u ) ) = ( ( sqrt ` ( 1 - ( u ^ 2 ) ) ) + ( -u ( u ^ 2 ) / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) ) |
223 |
61
|
sqcld |
|- ( u e. ( -u 1 (,) 1 ) -> ( u ^ 2 ) e. CC ) |
224 |
223
|
negcld |
|- ( u e. ( -u 1 (,) 1 ) -> -u ( u ^ 2 ) e. CC ) |
225 |
224 111 198
|
divcld |
|- ( u e. ( -u 1 (,) 1 ) -> ( -u ( u ^ 2 ) / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) e. CC ) |
226 |
111 225
|
addcomd |
|- ( u e. ( -u 1 (,) 1 ) -> ( ( sqrt ` ( 1 - ( u ^ 2 ) ) ) + ( -u ( u ^ 2 ) / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) = ( ( -u ( u ^ 2 ) / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) + ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) |
227 |
222 226
|
eqtrd |
|- ( u e. ( -u 1 (,) 1 ) -> ( ( 1 x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) + ( ( -u u / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) x. u ) ) = ( ( -u ( u ^ 2 ) / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) + ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) |
228 |
227
|
oveq2d |
|- ( u e. ( -u 1 (,) 1 ) -> ( ( 1 / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) + ( ( 1 x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) + ( ( -u u / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) x. u ) ) ) = ( ( 1 / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) + ( ( -u ( u ^ 2 ) / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) + ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) ) |
229 |
111
|
2timesd |
|- ( u e. ( -u 1 (,) 1 ) -> ( 2 x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) = ( ( sqrt ` ( 1 - ( u ^ 2 ) ) ) + ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) |
230 |
64 65
|
negsubd |
|- ( u e. CC -> ( 1 + -u ( u ^ 2 ) ) = ( 1 - ( u ^ 2 ) ) ) |
231 |
66
|
sqsqrtd |
|- ( u e. CC -> ( ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ^ 2 ) = ( 1 - ( u ^ 2 ) ) ) |
232 |
67
|
sqvald |
|- ( u e. CC -> ( ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ^ 2 ) = ( ( sqrt ` ( 1 - ( u ^ 2 ) ) ) x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) |
233 |
230 231 232
|
3eqtr2d |
|- ( u e. CC -> ( 1 + -u ( u ^ 2 ) ) = ( ( sqrt ` ( 1 - ( u ^ 2 ) ) ) x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) |
234 |
61 233
|
syl |
|- ( u e. ( -u 1 (,) 1 ) -> ( 1 + -u ( u ^ 2 ) ) = ( ( sqrt ` ( 1 - ( u ^ 2 ) ) ) x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) |
235 |
234
|
oveq1d |
|- ( u e. ( -u 1 (,) 1 ) -> ( ( 1 + -u ( u ^ 2 ) ) / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) = ( ( ( sqrt ` ( 1 - ( u ^ 2 ) ) ) x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) |
236 |
|
1cnd |
|- ( u e. ( -u 1 (,) 1 ) -> 1 e. CC ) |
237 |
236 224 111 198
|
divdird |
|- ( u e. ( -u 1 (,) 1 ) -> ( ( 1 + -u ( u ^ 2 ) ) / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) = ( ( 1 / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) + ( -u ( u ^ 2 ) / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) ) |
238 |
111 111 198
|
divcan3d |
|- ( u e. ( -u 1 (,) 1 ) -> ( ( ( sqrt ` ( 1 - ( u ^ 2 ) ) ) x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) = ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) |
239 |
235 237 238
|
3eqtr3rd |
|- ( u e. ( -u 1 (,) 1 ) -> ( sqrt ` ( 1 - ( u ^ 2 ) ) ) = ( ( 1 / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) + ( -u ( u ^ 2 ) / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) ) |
240 |
239
|
oveq1d |
|- ( u e. ( -u 1 (,) 1 ) -> ( ( sqrt ` ( 1 - ( u ^ 2 ) ) ) + ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) = ( ( ( 1 / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) + ( -u ( u ^ 2 ) / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) + ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) |
241 |
111 198
|
reccld |
|- ( u e. ( -u 1 (,) 1 ) -> ( 1 / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) e. CC ) |
242 |
241 225 111
|
addassd |
|- ( u e. ( -u 1 (,) 1 ) -> ( ( ( 1 / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) + ( -u ( u ^ 2 ) / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) + ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) = ( ( 1 / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) + ( ( -u ( u ^ 2 ) / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) + ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) ) |
243 |
229 240 242
|
3eqtrrd |
|- ( u e. ( -u 1 (,) 1 ) -> ( ( 1 / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) + ( ( -u ( u ^ 2 ) / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) + ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) = ( 2 x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) |
244 |
228 243
|
eqtrd |
|- ( u e. ( -u 1 (,) 1 ) -> ( ( 1 / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) + ( ( 1 x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) + ( ( -u u / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) x. u ) ) ) = ( 2 x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) |
245 |
244
|
mpteq2ia |
|- ( u e. ( -u 1 (,) 1 ) |-> ( ( 1 / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) + ( ( 1 x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) + ( ( -u u / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) x. u ) ) ) ) = ( u e. ( -u 1 (,) 1 ) |-> ( 2 x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) |
246 |
211 245
|
eqtrdi |
|- ( R e. RR+ -> ( RR _D ( u e. ( -u 1 (,) 1 ) |-> ( ( arcsin ` u ) + ( u x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) ) ) = ( u e. ( -u 1 (,) 1 ) |-> ( 2 x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) ) |
247 |
|
fveq2 |
|- ( u = ( t / R ) -> ( arcsin ` u ) = ( arcsin ` ( t / R ) ) ) |
248 |
|
id |
|- ( u = ( t / R ) -> u = ( t / R ) ) |
249 |
|
oveq1 |
|- ( u = ( t / R ) -> ( u ^ 2 ) = ( ( t / R ) ^ 2 ) ) |
250 |
249
|
oveq2d |
|- ( u = ( t / R ) -> ( 1 - ( u ^ 2 ) ) = ( 1 - ( ( t / R ) ^ 2 ) ) ) |
251 |
250
|
fveq2d |
|- ( u = ( t / R ) -> ( sqrt ` ( 1 - ( u ^ 2 ) ) ) = ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) |
252 |
248 251
|
oveq12d |
|- ( u = ( t / R ) -> ( u x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) = ( ( t / R ) x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) |
253 |
247 252
|
oveq12d |
|- ( u = ( t / R ) -> ( ( arcsin ` u ) + ( u x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) = ( ( arcsin ` ( t / R ) ) + ( ( t / R ) x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) ) |
254 |
251
|
oveq2d |
|- ( u = ( t / R ) -> ( 2 x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) = ( 2 x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) |
255 |
2 2 58 59 71 72 84 246 253 254
|
dvmptco |
|- ( R e. RR+ -> ( RR _D ( t e. ( -u R (,) R ) |-> ( ( arcsin ` ( t / R ) ) + ( ( t / R ) x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) ) ) = ( t e. ( -u R (,) R ) |-> ( ( 2 x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) x. ( 1 / R ) ) ) ) |
256 |
6
|
sqcld |
|- ( R e. RR+ -> ( R ^ 2 ) e. CC ) |
257 |
2 18 19 255 256
|
dvmptcmul |
|- ( R e. RR+ -> ( RR _D ( t e. ( -u R (,) R ) |-> ( ( R ^ 2 ) x. ( ( arcsin ` ( t / R ) ) + ( ( t / R ) x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) ) ) ) = ( t e. ( -u R (,) R ) |-> ( ( R ^ 2 ) x. ( ( 2 x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) x. ( 1 / R ) ) ) ) ) |
258 |
|
2cnd |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> 2 e. CC ) |
259 |
258 16
|
mulcld |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( 2 x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) e. CC ) |
260 |
6 8
|
reccld |
|- ( R e. RR+ -> ( 1 / R ) e. CC ) |
261 |
260
|
adantr |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( 1 / R ) e. CC ) |
262 |
259 261
|
mulcomd |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( ( 2 x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) x. ( 1 / R ) ) = ( ( 1 / R ) x. ( 2 x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) ) |
263 |
262
|
oveq2d |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( ( R ^ 2 ) x. ( ( 2 x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) x. ( 1 / R ) ) ) = ( ( R ^ 2 ) x. ( ( 1 / R ) x. ( 2 x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) ) ) |
264 |
256
|
adantr |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( R ^ 2 ) e. CC ) |
265 |
264 261 259
|
mulassd |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( ( ( R ^ 2 ) x. ( 1 / R ) ) x. ( 2 x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) = ( ( R ^ 2 ) x. ( ( 1 / R ) x. ( 2 x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) ) ) |
266 |
6
|
sqvald |
|- ( R e. RR+ -> ( R ^ 2 ) = ( R x. R ) ) |
267 |
266
|
oveq1d |
|- ( R e. RR+ -> ( ( R ^ 2 ) / R ) = ( ( R x. R ) / R ) ) |
268 |
256 6 8
|
divrecd |
|- ( R e. RR+ -> ( ( R ^ 2 ) / R ) = ( ( R ^ 2 ) x. ( 1 / R ) ) ) |
269 |
6 6 8
|
divcan3d |
|- ( R e. RR+ -> ( ( R x. R ) / R ) = R ) |
270 |
267 268 269
|
3eqtr3d |
|- ( R e. RR+ -> ( ( R ^ 2 ) x. ( 1 / R ) ) = R ) |
271 |
270
|
adantr |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( ( R ^ 2 ) x. ( 1 / R ) ) = R ) |
272 |
271
|
oveq1d |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( ( ( R ^ 2 ) x. ( 1 / R ) ) x. ( 2 x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) = ( R x. ( 2 x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) ) |
273 |
7 258 16
|
mul12d |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( R x. ( 2 x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) = ( 2 x. ( R x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) ) |
274 |
20
|
resqcld |
|- ( R e. RR+ -> ( R ^ 2 ) e. RR ) |
275 |
274
|
adantr |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( R ^ 2 ) e. RR ) |
276 |
20
|
sqge0d |
|- ( R e. RR+ -> 0 <_ ( R ^ 2 ) ) |
277 |
276
|
adantr |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> 0 <_ ( R ^ 2 ) ) |
278 |
|
1red |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> 1 e. RR ) |
279 |
3
|
adantl |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> t e. RR ) |
280 |
20
|
adantr |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> R e. RR ) |
281 |
279 280 9
|
redivcld |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( t / R ) e. RR ) |
282 |
281
|
resqcld |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( ( t / R ) ^ 2 ) e. RR ) |
283 |
278 282
|
resubcld |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( 1 - ( ( t / R ) ^ 2 ) ) e. RR ) |
284 |
|
0red |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> 0 e. RR ) |
285 |
26 27
|
absltd |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( abs ` t ) < R <-> ( -u R < t /\ t < R ) ) ) |
286 |
73
|
abscld |
|- ( t e. RR -> ( abs ` t ) e. RR ) |
287 |
286
|
adantl |
|- ( ( R e. RR+ /\ t e. RR ) -> ( abs ` t ) e. RR ) |
288 |
73
|
absge0d |
|- ( t e. RR -> 0 <_ ( abs ` t ) ) |
289 |
288
|
adantl |
|- ( ( R e. RR+ /\ t e. RR ) -> 0 <_ ( abs ` t ) ) |
290 |
|
rpge0 |
|- ( R e. RR+ -> 0 <_ R ) |
291 |
290
|
adantr |
|- ( ( R e. RR+ /\ t e. RR ) -> 0 <_ R ) |
292 |
287 27 289 291
|
lt2sqd |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( abs ` t ) < R <-> ( ( abs ` t ) ^ 2 ) < ( R ^ 2 ) ) ) |
293 |
|
absresq |
|- ( t e. RR -> ( ( abs ` t ) ^ 2 ) = ( t ^ 2 ) ) |
294 |
293
|
adantl |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( abs ` t ) ^ 2 ) = ( t ^ 2 ) ) |
295 |
256
|
adantr |
|- ( ( R e. RR+ /\ t e. RR ) -> ( R ^ 2 ) e. CC ) |
296 |
295
|
mulid1d |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( R ^ 2 ) x. 1 ) = ( R ^ 2 ) ) |
297 |
296
|
eqcomd |
|- ( ( R e. RR+ /\ t e. RR ) -> ( R ^ 2 ) = ( ( R ^ 2 ) x. 1 ) ) |
298 |
294 297
|
breq12d |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( ( abs ` t ) ^ 2 ) < ( R ^ 2 ) <-> ( t ^ 2 ) < ( ( R ^ 2 ) x. 1 ) ) ) |
299 |
6
|
adantr |
|- ( ( R e. RR+ /\ t e. RR ) -> R e. CC ) |
300 |
74 299 28
|
sqdivd |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( t / R ) ^ 2 ) = ( ( t ^ 2 ) / ( R ^ 2 ) ) ) |
301 |
300
|
breq1d |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( ( t / R ) ^ 2 ) < 1 <-> ( ( t ^ 2 ) / ( R ^ 2 ) ) < 1 ) ) |
302 |
29
|
resqcld |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( t / R ) ^ 2 ) e. RR ) |
303 |
302 41
|
posdifd |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( ( t / R ) ^ 2 ) < 1 <-> 0 < ( 1 - ( ( t / R ) ^ 2 ) ) ) ) |
304 |
|
resqcl |
|- ( t e. RR -> ( t ^ 2 ) e. RR ) |
305 |
304
|
adantl |
|- ( ( R e. RR+ /\ t e. RR ) -> ( t ^ 2 ) e. RR ) |
306 |
|
rpgt0 |
|- ( R e. RR+ -> 0 < R ) |
307 |
|
0red |
|- ( R e. RR+ -> 0 e. RR ) |
308 |
|
0le0 |
|- 0 <_ 0 |
309 |
308
|
a1i |
|- ( R e. RR+ -> 0 <_ 0 ) |
310 |
307 20 309 290
|
lt2sqd |
|- ( R e. RR+ -> ( 0 < R <-> ( 0 ^ 2 ) < ( R ^ 2 ) ) ) |
311 |
|
sq0 |
|- ( 0 ^ 2 ) = 0 |
312 |
311
|
a1i |
|- ( R e. RR+ -> ( 0 ^ 2 ) = 0 ) |
313 |
312
|
breq1d |
|- ( R e. RR+ -> ( ( 0 ^ 2 ) < ( R ^ 2 ) <-> 0 < ( R ^ 2 ) ) ) |
314 |
310 313
|
bitrd |
|- ( R e. RR+ -> ( 0 < R <-> 0 < ( R ^ 2 ) ) ) |
315 |
306 314
|
mpbid |
|- ( R e. RR+ -> 0 < ( R ^ 2 ) ) |
316 |
274 315
|
elrpd |
|- ( R e. RR+ -> ( R ^ 2 ) e. RR+ ) |
317 |
316
|
adantr |
|- ( ( R e. RR+ /\ t e. RR ) -> ( R ^ 2 ) e. RR+ ) |
318 |
305 41 317
|
ltdivmuld |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( ( t ^ 2 ) / ( R ^ 2 ) ) < 1 <-> ( t ^ 2 ) < ( ( R ^ 2 ) x. 1 ) ) ) |
319 |
301 303 318
|
3bitr3rd |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( t ^ 2 ) < ( ( R ^ 2 ) x. 1 ) <-> 0 < ( 1 - ( ( t / R ) ^ 2 ) ) ) ) |
320 |
292 298 319
|
3bitrd |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( abs ` t ) < R <-> 0 < ( 1 - ( ( t / R ) ^ 2 ) ) ) ) |
321 |
285 320
|
bitr3d |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( -u R < t /\ t < R ) <-> 0 < ( 1 - ( ( t / R ) ^ 2 ) ) ) ) |
322 |
321
|
biimpd |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( -u R < t /\ t < R ) -> 0 < ( 1 - ( ( t / R ) ^ 2 ) ) ) ) |
323 |
322
|
exp4b |
|- ( R e. RR+ -> ( t e. RR -> ( -u R < t -> ( t < R -> 0 < ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) ) |
324 |
323
|
3impd |
|- ( R e. RR+ -> ( ( t e. RR /\ -u R < t /\ t < R ) -> 0 < ( 1 - ( ( t / R ) ^ 2 ) ) ) ) |
325 |
25 324
|
sylbid |
|- ( R e. RR+ -> ( t e. ( -u R (,) R ) -> 0 < ( 1 - ( ( t / R ) ^ 2 ) ) ) ) |
326 |
325
|
imp |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> 0 < ( 1 - ( ( t / R ) ^ 2 ) ) ) |
327 |
284 283 326
|
ltled |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> 0 <_ ( 1 - ( ( t / R ) ^ 2 ) ) ) |
328 |
275 277 283 327
|
sqrtmuld |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( sqrt ` ( ( R ^ 2 ) x. ( 1 - ( ( t / R ) ^ 2 ) ) ) ) = ( ( sqrt ` ( R ^ 2 ) ) x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) |
329 |
264 13 14
|
subdid |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( ( R ^ 2 ) x. ( 1 - ( ( t / R ) ^ 2 ) ) ) = ( ( ( R ^ 2 ) x. 1 ) - ( ( R ^ 2 ) x. ( ( t / R ) ^ 2 ) ) ) ) |
330 |
264
|
mulid1d |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( ( R ^ 2 ) x. 1 ) = ( R ^ 2 ) ) |
331 |
5 7 9
|
sqdivd |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( ( t / R ) ^ 2 ) = ( ( t ^ 2 ) / ( R ^ 2 ) ) ) |
332 |
331
|
oveq2d |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( ( R ^ 2 ) x. ( ( t / R ) ^ 2 ) ) = ( ( R ^ 2 ) x. ( ( t ^ 2 ) / ( R ^ 2 ) ) ) ) |
333 |
4
|
sqcld |
|- ( t e. ( -u R (,) R ) -> ( t ^ 2 ) e. CC ) |
334 |
333
|
adantl |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( t ^ 2 ) e. CC ) |
335 |
|
sqne0 |
|- ( R e. CC -> ( ( R ^ 2 ) =/= 0 <-> R =/= 0 ) ) |
336 |
6 335
|
syl |
|- ( R e. RR+ -> ( ( R ^ 2 ) =/= 0 <-> R =/= 0 ) ) |
337 |
8 336
|
mpbird |
|- ( R e. RR+ -> ( R ^ 2 ) =/= 0 ) |
338 |
337
|
adantr |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( R ^ 2 ) =/= 0 ) |
339 |
334 264 338
|
divcan2d |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( ( R ^ 2 ) x. ( ( t ^ 2 ) / ( R ^ 2 ) ) ) = ( t ^ 2 ) ) |
340 |
332 339
|
eqtrd |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( ( R ^ 2 ) x. ( ( t / R ) ^ 2 ) ) = ( t ^ 2 ) ) |
341 |
330 340
|
oveq12d |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( ( ( R ^ 2 ) x. 1 ) - ( ( R ^ 2 ) x. ( ( t / R ) ^ 2 ) ) ) = ( ( R ^ 2 ) - ( t ^ 2 ) ) ) |
342 |
329 341
|
eqtrd |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( ( R ^ 2 ) x. ( 1 - ( ( t / R ) ^ 2 ) ) ) = ( ( R ^ 2 ) - ( t ^ 2 ) ) ) |
343 |
342
|
fveq2d |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( sqrt ` ( ( R ^ 2 ) x. ( 1 - ( ( t / R ) ^ 2 ) ) ) ) = ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) |
344 |
20 290
|
sqrtsqd |
|- ( R e. RR+ -> ( sqrt ` ( R ^ 2 ) ) = R ) |
345 |
344
|
adantr |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( sqrt ` ( R ^ 2 ) ) = R ) |
346 |
345
|
oveq1d |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( ( sqrt ` ( R ^ 2 ) ) x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) = ( R x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) |
347 |
328 343 346
|
3eqtr3rd |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( R x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) = ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) |
348 |
347
|
oveq2d |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( 2 x. ( R x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) = ( 2 x. ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) |
349 |
272 273 348
|
3eqtrd |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( ( ( R ^ 2 ) x. ( 1 / R ) ) x. ( 2 x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) = ( 2 x. ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) |
350 |
263 265 349
|
3eqtr2d |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( ( R ^ 2 ) x. ( ( 2 x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) x. ( 1 / R ) ) ) = ( 2 x. ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) |
351 |
350
|
mpteq2dva |
|- ( R e. RR+ -> ( t e. ( -u R (,) R ) |-> ( ( R ^ 2 ) x. ( ( 2 x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) x. ( 1 / R ) ) ) ) = ( t e. ( -u R (,) R ) |-> ( 2 x. ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) ) |
352 |
257 351
|
eqtrd |
|- ( R e. RR+ -> ( RR _D ( t e. ( -u R (,) R ) |-> ( ( R ^ 2 ) x. ( ( arcsin ` ( t / R ) ) + ( ( t / R ) x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) ) ) ) = ( t e. ( -u R (,) R ) |-> ( 2 x. ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) ) |