| Step |
Hyp |
Ref |
Expression |
| 1 |
|
reelprrecn |
|- RR e. { RR , CC } |
| 2 |
1
|
a1i |
|- ( R e. RR+ -> RR e. { RR , CC } ) |
| 3 |
|
elioore |
|- ( t e. ( -u R (,) R ) -> t e. RR ) |
| 4 |
3
|
recnd |
|- ( t e. ( -u R (,) R ) -> t e. CC ) |
| 5 |
4
|
adantl |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> t e. CC ) |
| 6 |
|
rpcn |
|- ( R e. RR+ -> R e. CC ) |
| 7 |
6
|
adantr |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> R e. CC ) |
| 8 |
|
rpne0 |
|- ( R e. RR+ -> R =/= 0 ) |
| 9 |
8
|
adantr |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> R =/= 0 ) |
| 10 |
5 7 9
|
divcld |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( t / R ) e. CC ) |
| 11 |
|
asincl |
|- ( ( t / R ) e. CC -> ( arcsin ` ( t / R ) ) e. CC ) |
| 12 |
10 11
|
syl |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( arcsin ` ( t / R ) ) e. CC ) |
| 13 |
|
1cnd |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> 1 e. CC ) |
| 14 |
10
|
sqcld |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( ( t / R ) ^ 2 ) e. CC ) |
| 15 |
13 14
|
subcld |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( 1 - ( ( t / R ) ^ 2 ) ) e. CC ) |
| 16 |
15
|
sqrtcld |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) e. CC ) |
| 17 |
10 16
|
mulcld |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( ( t / R ) x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) e. CC ) |
| 18 |
12 17
|
addcld |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( ( arcsin ` ( t / R ) ) + ( ( t / R ) x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) e. CC ) |
| 19 |
|
ovexd |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( ( 2 x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) x. ( 1 / R ) ) e. _V ) |
| 20 |
|
rpre |
|- ( R e. RR+ -> R e. RR ) |
| 21 |
20
|
renegcld |
|- ( R e. RR+ -> -u R e. RR ) |
| 22 |
21
|
rexrd |
|- ( R e. RR+ -> -u R e. RR* ) |
| 23 |
|
rpxr |
|- ( R e. RR+ -> R e. RR* ) |
| 24 |
|
elioo2 |
|- ( ( -u R e. RR* /\ R e. RR* ) -> ( t e. ( -u R (,) R ) <-> ( t e. RR /\ -u R < t /\ t < R ) ) ) |
| 25 |
22 23 24
|
syl2anc |
|- ( R e. RR+ -> ( t e. ( -u R (,) R ) <-> ( t e. RR /\ -u R < t /\ t < R ) ) ) |
| 26 |
|
simpr |
|- ( ( R e. RR+ /\ t e. RR ) -> t e. RR ) |
| 27 |
20
|
adantr |
|- ( ( R e. RR+ /\ t e. RR ) -> R e. RR ) |
| 28 |
8
|
adantr |
|- ( ( R e. RR+ /\ t e. RR ) -> R =/= 0 ) |
| 29 |
26 27 28
|
redivcld |
|- ( ( R e. RR+ /\ t e. RR ) -> ( t / R ) e. RR ) |
| 30 |
29
|
a1d |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( -u R < t /\ t < R ) -> ( t / R ) e. RR ) ) |
| 31 |
6
|
mulm1d |
|- ( R e. RR+ -> ( -u 1 x. R ) = -u R ) |
| 32 |
31
|
adantr |
|- ( ( R e. RR+ /\ t e. RR ) -> ( -u 1 x. R ) = -u R ) |
| 33 |
32
|
breq1d |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( -u 1 x. R ) < t <-> -u R < t ) ) |
| 34 |
|
neg1rr |
|- -u 1 e. RR |
| 35 |
34
|
a1i |
|- ( ( R e. RR+ /\ t e. RR ) -> -u 1 e. RR ) |
| 36 |
|
simpl |
|- ( ( R e. RR+ /\ t e. RR ) -> R e. RR+ ) |
| 37 |
35 26 36
|
ltmuldivd |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( -u 1 x. R ) < t <-> -u 1 < ( t / R ) ) ) |
| 38 |
33 37
|
bitr3d |
|- ( ( R e. RR+ /\ t e. RR ) -> ( -u R < t <-> -u 1 < ( t / R ) ) ) |
| 39 |
38
|
biimpd |
|- ( ( R e. RR+ /\ t e. RR ) -> ( -u R < t -> -u 1 < ( t / R ) ) ) |
| 40 |
39
|
adantrd |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( -u R < t /\ t < R ) -> -u 1 < ( t / R ) ) ) |
| 41 |
|
1red |
|- ( ( R e. RR+ /\ t e. RR ) -> 1 e. RR ) |
| 42 |
26 41 36
|
ltdivmuld |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( t / R ) < 1 <-> t < ( R x. 1 ) ) ) |
| 43 |
6
|
mulridd |
|- ( R e. RR+ -> ( R x. 1 ) = R ) |
| 44 |
43
|
adantr |
|- ( ( R e. RR+ /\ t e. RR ) -> ( R x. 1 ) = R ) |
| 45 |
44
|
breq2d |
|- ( ( R e. RR+ /\ t e. RR ) -> ( t < ( R x. 1 ) <-> t < R ) ) |
| 46 |
42 45
|
bitr2d |
|- ( ( R e. RR+ /\ t e. RR ) -> ( t < R <-> ( t / R ) < 1 ) ) |
| 47 |
46
|
biimpd |
|- ( ( R e. RR+ /\ t e. RR ) -> ( t < R -> ( t / R ) < 1 ) ) |
| 48 |
47
|
adantld |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( -u R < t /\ t < R ) -> ( t / R ) < 1 ) ) |
| 49 |
30 40 48
|
3jcad |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( -u R < t /\ t < R ) -> ( ( t / R ) e. RR /\ -u 1 < ( t / R ) /\ ( t / R ) < 1 ) ) ) |
| 50 |
49
|
exp4b |
|- ( R e. RR+ -> ( t e. RR -> ( -u R < t -> ( t < R -> ( ( t / R ) e. RR /\ -u 1 < ( t / R ) /\ ( t / R ) < 1 ) ) ) ) ) |
| 51 |
50
|
3impd |
|- ( R e. RR+ -> ( ( t e. RR /\ -u R < t /\ t < R ) -> ( ( t / R ) e. RR /\ -u 1 < ( t / R ) /\ ( t / R ) < 1 ) ) ) |
| 52 |
25 51
|
sylbid |
|- ( R e. RR+ -> ( t e. ( -u R (,) R ) -> ( ( t / R ) e. RR /\ -u 1 < ( t / R ) /\ ( t / R ) < 1 ) ) ) |
| 53 |
52
|
imp |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( ( t / R ) e. RR /\ -u 1 < ( t / R ) /\ ( t / R ) < 1 ) ) |
| 54 |
34
|
rexri |
|- -u 1 e. RR* |
| 55 |
|
1xr |
|- 1 e. RR* |
| 56 |
|
elioo2 |
|- ( ( -u 1 e. RR* /\ 1 e. RR* ) -> ( ( t / R ) e. ( -u 1 (,) 1 ) <-> ( ( t / R ) e. RR /\ -u 1 < ( t / R ) /\ ( t / R ) < 1 ) ) ) |
| 57 |
54 55 56
|
mp2an |
|- ( ( t / R ) e. ( -u 1 (,) 1 ) <-> ( ( t / R ) e. RR /\ -u 1 < ( t / R ) /\ ( t / R ) < 1 ) ) |
| 58 |
53 57
|
sylibr |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( t / R ) e. ( -u 1 (,) 1 ) ) |
| 59 |
|
ovexd |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( 1 / R ) e. _V ) |
| 60 |
|
elioore |
|- ( u e. ( -u 1 (,) 1 ) -> u e. RR ) |
| 61 |
60
|
recnd |
|- ( u e. ( -u 1 (,) 1 ) -> u e. CC ) |
| 62 |
|
asincl |
|- ( u e. CC -> ( arcsin ` u ) e. CC ) |
| 63 |
|
id |
|- ( u e. CC -> u e. CC ) |
| 64 |
|
1cnd |
|- ( u e. CC -> 1 e. CC ) |
| 65 |
|
sqcl |
|- ( u e. CC -> ( u ^ 2 ) e. CC ) |
| 66 |
64 65
|
subcld |
|- ( u e. CC -> ( 1 - ( u ^ 2 ) ) e. CC ) |
| 67 |
66
|
sqrtcld |
|- ( u e. CC -> ( sqrt ` ( 1 - ( u ^ 2 ) ) ) e. CC ) |
| 68 |
63 67
|
mulcld |
|- ( u e. CC -> ( u x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) e. CC ) |
| 69 |
62 68
|
addcld |
|- ( u e. CC -> ( ( arcsin ` u ) + ( u x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) e. CC ) |
| 70 |
61 69
|
syl |
|- ( u e. ( -u 1 (,) 1 ) -> ( ( arcsin ` u ) + ( u x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) e. CC ) |
| 71 |
70
|
adantl |
|- ( ( R e. RR+ /\ u e. ( -u 1 (,) 1 ) ) -> ( ( arcsin ` u ) + ( u x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) e. CC ) |
| 72 |
|
ovexd |
|- ( ( R e. RR+ /\ u e. ( -u 1 (,) 1 ) ) -> ( 2 x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) e. _V ) |
| 73 |
|
recn |
|- ( t e. RR -> t e. CC ) |
| 74 |
73
|
adantl |
|- ( ( R e. RR+ /\ t e. RR ) -> t e. CC ) |
| 75 |
|
1cnd |
|- ( ( R e. RR+ /\ t e. RR ) -> 1 e. CC ) |
| 76 |
2
|
dvmptid |
|- ( R e. RR+ -> ( RR _D ( t e. RR |-> t ) ) = ( t e. RR |-> 1 ) ) |
| 77 |
|
ioossre |
|- ( -u R (,) R ) C_ RR |
| 78 |
77
|
a1i |
|- ( R e. RR+ -> ( -u R (,) R ) C_ RR ) |
| 79 |
|
tgioo4 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
| 80 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 81 |
|
iooretop |
|- ( -u R (,) R ) e. ( topGen ` ran (,) ) |
| 82 |
81
|
a1i |
|- ( R e. RR+ -> ( -u R (,) R ) e. ( topGen ` ran (,) ) ) |
| 83 |
2 74 75 76 78 79 80 82
|
dvmptres |
|- ( R e. RR+ -> ( RR _D ( t e. ( -u R (,) R ) |-> t ) ) = ( t e. ( -u R (,) R ) |-> 1 ) ) |
| 84 |
2 5 13 83 6 8
|
dvmptdivc |
|- ( R e. RR+ -> ( RR _D ( t e. ( -u R (,) R ) |-> ( t / R ) ) ) = ( t e. ( -u R (,) R ) |-> ( 1 / R ) ) ) |
| 85 |
61 62
|
syl |
|- ( u e. ( -u 1 (,) 1 ) -> ( arcsin ` u ) e. CC ) |
| 86 |
85
|
adantl |
|- ( ( R e. RR+ /\ u e. ( -u 1 (,) 1 ) ) -> ( arcsin ` u ) e. CC ) |
| 87 |
|
ovexd |
|- ( ( R e. RR+ /\ u e. ( -u 1 (,) 1 ) ) -> ( 1 / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) e. _V ) |
| 88 |
|
asinf |
|- arcsin : CC --> CC |
| 89 |
88
|
a1i |
|- ( R e. RR+ -> arcsin : CC --> CC ) |
| 90 |
|
ioossre |
|- ( -u 1 (,) 1 ) C_ RR |
| 91 |
|
ax-resscn |
|- RR C_ CC |
| 92 |
90 91
|
sstri |
|- ( -u 1 (,) 1 ) C_ CC |
| 93 |
92
|
a1i |
|- ( R e. RR+ -> ( -u 1 (,) 1 ) C_ CC ) |
| 94 |
89 93
|
feqresmpt |
|- ( R e. RR+ -> ( arcsin |` ( -u 1 (,) 1 ) ) = ( u e. ( -u 1 (,) 1 ) |-> ( arcsin ` u ) ) ) |
| 95 |
94
|
oveq2d |
|- ( R e. RR+ -> ( RR _D ( arcsin |` ( -u 1 (,) 1 ) ) ) = ( RR _D ( u e. ( -u 1 (,) 1 ) |-> ( arcsin ` u ) ) ) ) |
| 96 |
|
dvreasin |
|- ( RR _D ( arcsin |` ( -u 1 (,) 1 ) ) ) = ( u e. ( -u 1 (,) 1 ) |-> ( 1 / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) |
| 97 |
95 96
|
eqtr3di |
|- ( R e. RR+ -> ( RR _D ( u e. ( -u 1 (,) 1 ) |-> ( arcsin ` u ) ) ) = ( u e. ( -u 1 (,) 1 ) |-> ( 1 / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) ) |
| 98 |
61 68
|
syl |
|- ( u e. ( -u 1 (,) 1 ) -> ( u x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) e. CC ) |
| 99 |
98
|
adantl |
|- ( ( R e. RR+ /\ u e. ( -u 1 (,) 1 ) ) -> ( u x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) e. CC ) |
| 100 |
|
ovexd |
|- ( ( R e. RR+ /\ u e. ( -u 1 (,) 1 ) ) -> ( ( 1 x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) + ( ( -u u / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) x. u ) ) e. _V ) |
| 101 |
61
|
adantl |
|- ( ( R e. RR+ /\ u e. ( -u 1 (,) 1 ) ) -> u e. CC ) |
| 102 |
|
1cnd |
|- ( ( R e. RR+ /\ u e. ( -u 1 (,) 1 ) ) -> 1 e. CC ) |
| 103 |
|
recn |
|- ( u e. RR -> u e. CC ) |
| 104 |
103
|
adantl |
|- ( ( R e. RR+ /\ u e. RR ) -> u e. CC ) |
| 105 |
|
1cnd |
|- ( ( R e. RR+ /\ u e. RR ) -> 1 e. CC ) |
| 106 |
2
|
dvmptid |
|- ( R e. RR+ -> ( RR _D ( u e. RR |-> u ) ) = ( u e. RR |-> 1 ) ) |
| 107 |
90
|
a1i |
|- ( R e. RR+ -> ( -u 1 (,) 1 ) C_ RR ) |
| 108 |
|
iooretop |
|- ( -u 1 (,) 1 ) e. ( topGen ` ran (,) ) |
| 109 |
108
|
a1i |
|- ( R e. RR+ -> ( -u 1 (,) 1 ) e. ( topGen ` ran (,) ) ) |
| 110 |
2 104 105 106 107 79 80 109
|
dvmptres |
|- ( R e. RR+ -> ( RR _D ( u e. ( -u 1 (,) 1 ) |-> u ) ) = ( u e. ( -u 1 (,) 1 ) |-> 1 ) ) |
| 111 |
61 67
|
syl |
|- ( u e. ( -u 1 (,) 1 ) -> ( sqrt ` ( 1 - ( u ^ 2 ) ) ) e. CC ) |
| 112 |
111
|
adantl |
|- ( ( R e. RR+ /\ u e. ( -u 1 (,) 1 ) ) -> ( sqrt ` ( 1 - ( u ^ 2 ) ) ) e. CC ) |
| 113 |
|
ovexd |
|- ( ( R e. RR+ /\ u e. ( -u 1 (,) 1 ) ) -> ( -u u / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) e. _V ) |
| 114 |
|
1red |
|- ( u e. ( -u 1 (,) 1 ) -> 1 e. RR ) |
| 115 |
60
|
resqcld |
|- ( u e. ( -u 1 (,) 1 ) -> ( u ^ 2 ) e. RR ) |
| 116 |
114 115
|
resubcld |
|- ( u e. ( -u 1 (,) 1 ) -> ( 1 - ( u ^ 2 ) ) e. RR ) |
| 117 |
|
elioo2 |
|- ( ( -u 1 e. RR* /\ 1 e. RR* ) -> ( u e. ( -u 1 (,) 1 ) <-> ( u e. RR /\ -u 1 < u /\ u < 1 ) ) ) |
| 118 |
54 55 117
|
mp2an |
|- ( u e. ( -u 1 (,) 1 ) <-> ( u e. RR /\ -u 1 < u /\ u < 1 ) ) |
| 119 |
|
id |
|- ( u e. RR -> u e. RR ) |
| 120 |
|
1red |
|- ( u e. RR -> 1 e. RR ) |
| 121 |
119 120
|
absltd |
|- ( u e. RR -> ( ( abs ` u ) < 1 <-> ( -u 1 < u /\ u < 1 ) ) ) |
| 122 |
103
|
abscld |
|- ( u e. RR -> ( abs ` u ) e. RR ) |
| 123 |
103
|
absge0d |
|- ( u e. RR -> 0 <_ ( abs ` u ) ) |
| 124 |
|
0le1 |
|- 0 <_ 1 |
| 125 |
124
|
a1i |
|- ( u e. RR -> 0 <_ 1 ) |
| 126 |
122 120 123 125
|
lt2sqd |
|- ( u e. RR -> ( ( abs ` u ) < 1 <-> ( ( abs ` u ) ^ 2 ) < ( 1 ^ 2 ) ) ) |
| 127 |
|
absresq |
|- ( u e. RR -> ( ( abs ` u ) ^ 2 ) = ( u ^ 2 ) ) |
| 128 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
| 129 |
128
|
a1i |
|- ( u e. RR -> ( 1 ^ 2 ) = 1 ) |
| 130 |
127 129
|
breq12d |
|- ( u e. RR -> ( ( ( abs ` u ) ^ 2 ) < ( 1 ^ 2 ) <-> ( u ^ 2 ) < 1 ) ) |
| 131 |
|
resqcl |
|- ( u e. RR -> ( u ^ 2 ) e. RR ) |
| 132 |
131 120
|
posdifd |
|- ( u e. RR -> ( ( u ^ 2 ) < 1 <-> 0 < ( 1 - ( u ^ 2 ) ) ) ) |
| 133 |
126 130 132
|
3bitrd |
|- ( u e. RR -> ( ( abs ` u ) < 1 <-> 0 < ( 1 - ( u ^ 2 ) ) ) ) |
| 134 |
121 133
|
bitr3d |
|- ( u e. RR -> ( ( -u 1 < u /\ u < 1 ) <-> 0 < ( 1 - ( u ^ 2 ) ) ) ) |
| 135 |
134
|
biimpd |
|- ( u e. RR -> ( ( -u 1 < u /\ u < 1 ) -> 0 < ( 1 - ( u ^ 2 ) ) ) ) |
| 136 |
135
|
3impib |
|- ( ( u e. RR /\ -u 1 < u /\ u < 1 ) -> 0 < ( 1 - ( u ^ 2 ) ) ) |
| 137 |
118 136
|
sylbi |
|- ( u e. ( -u 1 (,) 1 ) -> 0 < ( 1 - ( u ^ 2 ) ) ) |
| 138 |
116 137
|
elrpd |
|- ( u e. ( -u 1 (,) 1 ) -> ( 1 - ( u ^ 2 ) ) e. RR+ ) |
| 139 |
138
|
adantl |
|- ( ( R e. RR+ /\ u e. ( -u 1 (,) 1 ) ) -> ( 1 - ( u ^ 2 ) ) e. RR+ ) |
| 140 |
|
negex |
|- -u ( 2 x. u ) e. _V |
| 141 |
140
|
a1i |
|- ( ( R e. RR+ /\ u e. ( -u 1 (,) 1 ) ) -> -u ( 2 x. u ) e. _V ) |
| 142 |
|
rpcn |
|- ( v e. RR+ -> v e. CC ) |
| 143 |
142
|
sqrtcld |
|- ( v e. RR+ -> ( sqrt ` v ) e. CC ) |
| 144 |
143
|
adantl |
|- ( ( R e. RR+ /\ v e. RR+ ) -> ( sqrt ` v ) e. CC ) |
| 145 |
|
ovexd |
|- ( ( R e. RR+ /\ v e. RR+ ) -> ( 1 / ( 2 x. ( sqrt ` v ) ) ) e. _V ) |
| 146 |
|
1cnd |
|- ( u e. RR -> 1 e. CC ) |
| 147 |
103
|
sqcld |
|- ( u e. RR -> ( u ^ 2 ) e. CC ) |
| 148 |
146 147
|
subcld |
|- ( u e. RR -> ( 1 - ( u ^ 2 ) ) e. CC ) |
| 149 |
148
|
adantl |
|- ( ( R e. RR+ /\ u e. RR ) -> ( 1 - ( u ^ 2 ) ) e. CC ) |
| 150 |
140
|
a1i |
|- ( ( R e. RR+ /\ u e. RR ) -> -u ( 2 x. u ) e. _V ) |
| 151 |
|
0red |
|- ( ( R e. RR+ /\ u e. RR ) -> 0 e. RR ) |
| 152 |
|
1cnd |
|- ( R e. RR+ -> 1 e. CC ) |
| 153 |
2 152
|
dvmptc |
|- ( R e. RR+ -> ( RR _D ( u e. RR |-> 1 ) ) = ( u e. RR |-> 0 ) ) |
| 154 |
147
|
adantl |
|- ( ( R e. RR+ /\ u e. RR ) -> ( u ^ 2 ) e. CC ) |
| 155 |
|
ovexd |
|- ( ( R e. RR+ /\ u e. RR ) -> ( 2 x. u ) e. _V ) |
| 156 |
80
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 157 |
|
toponmax |
|- ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) -> CC e. ( TopOpen ` CCfld ) ) |
| 158 |
156 157
|
mp1i |
|- ( R e. RR+ -> CC e. ( TopOpen ` CCfld ) ) |
| 159 |
|
dfss2 |
|- ( RR C_ CC <-> ( RR i^i CC ) = RR ) |
| 160 |
91 159
|
mpbi |
|- ( RR i^i CC ) = RR |
| 161 |
160
|
a1i |
|- ( R e. RR+ -> ( RR i^i CC ) = RR ) |
| 162 |
65
|
adantl |
|- ( ( R e. RR+ /\ u e. CC ) -> ( u ^ 2 ) e. CC ) |
| 163 |
|
ovexd |
|- ( ( R e. RR+ /\ u e. CC ) -> ( 2 x. u ) e. _V ) |
| 164 |
|
2nn |
|- 2 e. NN |
| 165 |
|
dvexp |
|- ( 2 e. NN -> ( CC _D ( u e. CC |-> ( u ^ 2 ) ) ) = ( u e. CC |-> ( 2 x. ( u ^ ( 2 - 1 ) ) ) ) ) |
| 166 |
164 165
|
ax-mp |
|- ( CC _D ( u e. CC |-> ( u ^ 2 ) ) ) = ( u e. CC |-> ( 2 x. ( u ^ ( 2 - 1 ) ) ) ) |
| 167 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
| 168 |
167
|
oveq2i |
|- ( u ^ ( 2 - 1 ) ) = ( u ^ 1 ) |
| 169 |
|
exp1 |
|- ( u e. CC -> ( u ^ 1 ) = u ) |
| 170 |
168 169
|
eqtrid |
|- ( u e. CC -> ( u ^ ( 2 - 1 ) ) = u ) |
| 171 |
170
|
oveq2d |
|- ( u e. CC -> ( 2 x. ( u ^ ( 2 - 1 ) ) ) = ( 2 x. u ) ) |
| 172 |
171
|
mpteq2ia |
|- ( u e. CC |-> ( 2 x. ( u ^ ( 2 - 1 ) ) ) ) = ( u e. CC |-> ( 2 x. u ) ) |
| 173 |
166 172
|
eqtri |
|- ( CC _D ( u e. CC |-> ( u ^ 2 ) ) ) = ( u e. CC |-> ( 2 x. u ) ) |
| 174 |
173
|
a1i |
|- ( R e. RR+ -> ( CC _D ( u e. CC |-> ( u ^ 2 ) ) ) = ( u e. CC |-> ( 2 x. u ) ) ) |
| 175 |
80 2 158 161 162 163 174
|
dvmptres3 |
|- ( R e. RR+ -> ( RR _D ( u e. RR |-> ( u ^ 2 ) ) ) = ( u e. RR |-> ( 2 x. u ) ) ) |
| 176 |
2 105 151 153 154 155 175
|
dvmptsub |
|- ( R e. RR+ -> ( RR _D ( u e. RR |-> ( 1 - ( u ^ 2 ) ) ) ) = ( u e. RR |-> ( 0 - ( 2 x. u ) ) ) ) |
| 177 |
|
df-neg |
|- -u ( 2 x. u ) = ( 0 - ( 2 x. u ) ) |
| 178 |
177
|
mpteq2i |
|- ( u e. RR |-> -u ( 2 x. u ) ) = ( u e. RR |-> ( 0 - ( 2 x. u ) ) ) |
| 179 |
176 178
|
eqtr4di |
|- ( R e. RR+ -> ( RR _D ( u e. RR |-> ( 1 - ( u ^ 2 ) ) ) ) = ( u e. RR |-> -u ( 2 x. u ) ) ) |
| 180 |
2 149 150 179 107 79 80 109
|
dvmptres |
|- ( R e. RR+ -> ( RR _D ( u e. ( -u 1 (,) 1 ) |-> ( 1 - ( u ^ 2 ) ) ) ) = ( u e. ( -u 1 (,) 1 ) |-> -u ( 2 x. u ) ) ) |
| 181 |
|
dvsqrt |
|- ( RR _D ( v e. RR+ |-> ( sqrt ` v ) ) ) = ( v e. RR+ |-> ( 1 / ( 2 x. ( sqrt ` v ) ) ) ) |
| 182 |
181
|
a1i |
|- ( R e. RR+ -> ( RR _D ( v e. RR+ |-> ( sqrt ` v ) ) ) = ( v e. RR+ |-> ( 1 / ( 2 x. ( sqrt ` v ) ) ) ) ) |
| 183 |
|
fveq2 |
|- ( v = ( 1 - ( u ^ 2 ) ) -> ( sqrt ` v ) = ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) |
| 184 |
183
|
oveq2d |
|- ( v = ( 1 - ( u ^ 2 ) ) -> ( 2 x. ( sqrt ` v ) ) = ( 2 x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) |
| 185 |
184
|
oveq2d |
|- ( v = ( 1 - ( u ^ 2 ) ) -> ( 1 / ( 2 x. ( sqrt ` v ) ) ) = ( 1 / ( 2 x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) ) |
| 186 |
2 2 139 141 144 145 180 182 183 185
|
dvmptco |
|- ( R e. RR+ -> ( RR _D ( u e. ( -u 1 (,) 1 ) |-> ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) = ( u e. ( -u 1 (,) 1 ) |-> ( ( 1 / ( 2 x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) x. -u ( 2 x. u ) ) ) ) |
| 187 |
|
2cnd |
|- ( u e. ( -u 1 (,) 1 ) -> 2 e. CC ) |
| 188 |
187 61
|
mulneg2d |
|- ( u e. ( -u 1 (,) 1 ) -> ( 2 x. -u u ) = -u ( 2 x. u ) ) |
| 189 |
188
|
oveq1d |
|- ( u e. ( -u 1 (,) 1 ) -> ( ( 2 x. -u u ) / ( 2 x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) = ( -u ( 2 x. u ) / ( 2 x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) ) |
| 190 |
61
|
negcld |
|- ( u e. ( -u 1 (,) 1 ) -> -u u e. CC ) |
| 191 |
137
|
gt0ne0d |
|- ( u e. ( -u 1 (,) 1 ) -> ( 1 - ( u ^ 2 ) ) =/= 0 ) |
| 192 |
61 66
|
syl |
|- ( u e. ( -u 1 (,) 1 ) -> ( 1 - ( u ^ 2 ) ) e. CC ) |
| 193 |
192
|
adantr |
|- ( ( u e. ( -u 1 (,) 1 ) /\ ( sqrt ` ( 1 - ( u ^ 2 ) ) ) = 0 ) -> ( 1 - ( u ^ 2 ) ) e. CC ) |
| 194 |
|
simpr |
|- ( ( u e. ( -u 1 (,) 1 ) /\ ( sqrt ` ( 1 - ( u ^ 2 ) ) ) = 0 ) -> ( sqrt ` ( 1 - ( u ^ 2 ) ) ) = 0 ) |
| 195 |
193 194
|
sqr00d |
|- ( ( u e. ( -u 1 (,) 1 ) /\ ( sqrt ` ( 1 - ( u ^ 2 ) ) ) = 0 ) -> ( 1 - ( u ^ 2 ) ) = 0 ) |
| 196 |
195
|
ex |
|- ( u e. ( -u 1 (,) 1 ) -> ( ( sqrt ` ( 1 - ( u ^ 2 ) ) ) = 0 -> ( 1 - ( u ^ 2 ) ) = 0 ) ) |
| 197 |
196
|
necon3d |
|- ( u e. ( -u 1 (,) 1 ) -> ( ( 1 - ( u ^ 2 ) ) =/= 0 -> ( sqrt ` ( 1 - ( u ^ 2 ) ) ) =/= 0 ) ) |
| 198 |
191 197
|
mpd |
|- ( u e. ( -u 1 (,) 1 ) -> ( sqrt ` ( 1 - ( u ^ 2 ) ) ) =/= 0 ) |
| 199 |
|
2ne0 |
|- 2 =/= 0 |
| 200 |
199
|
a1i |
|- ( u e. ( -u 1 (,) 1 ) -> 2 =/= 0 ) |
| 201 |
190 111 187 198 200
|
divcan5d |
|- ( u e. ( -u 1 (,) 1 ) -> ( ( 2 x. -u u ) / ( 2 x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) = ( -u u / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) |
| 202 |
187 61
|
mulcld |
|- ( u e. ( -u 1 (,) 1 ) -> ( 2 x. u ) e. CC ) |
| 203 |
202
|
negcld |
|- ( u e. ( -u 1 (,) 1 ) -> -u ( 2 x. u ) e. CC ) |
| 204 |
187 111
|
mulcld |
|- ( u e. ( -u 1 (,) 1 ) -> ( 2 x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) e. CC ) |
| 205 |
187 111 200 198
|
mulne0d |
|- ( u e. ( -u 1 (,) 1 ) -> ( 2 x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) =/= 0 ) |
| 206 |
203 204 205
|
divrec2d |
|- ( u e. ( -u 1 (,) 1 ) -> ( -u ( 2 x. u ) / ( 2 x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) = ( ( 1 / ( 2 x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) x. -u ( 2 x. u ) ) ) |
| 207 |
189 201 206
|
3eqtr3rd |
|- ( u e. ( -u 1 (,) 1 ) -> ( ( 1 / ( 2 x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) x. -u ( 2 x. u ) ) = ( -u u / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) |
| 208 |
207
|
mpteq2ia |
|- ( u e. ( -u 1 (,) 1 ) |-> ( ( 1 / ( 2 x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) x. -u ( 2 x. u ) ) ) = ( u e. ( -u 1 (,) 1 ) |-> ( -u u / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) |
| 209 |
186 208
|
eqtrdi |
|- ( R e. RR+ -> ( RR _D ( u e. ( -u 1 (,) 1 ) |-> ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) = ( u e. ( -u 1 (,) 1 ) |-> ( -u u / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) ) |
| 210 |
2 101 102 110 112 113 209
|
dvmptmul |
|- ( R e. RR+ -> ( RR _D ( u e. ( -u 1 (,) 1 ) |-> ( u x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) ) = ( u e. ( -u 1 (,) 1 ) |-> ( ( 1 x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) + ( ( -u u / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) x. u ) ) ) ) |
| 211 |
2 86 87 97 99 100 210
|
dvmptadd |
|- ( R e. RR+ -> ( RR _D ( u e. ( -u 1 (,) 1 ) |-> ( ( arcsin ` u ) + ( u x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) ) ) = ( u e. ( -u 1 (,) 1 ) |-> ( ( 1 / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) + ( ( 1 x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) + ( ( -u u / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) x. u ) ) ) ) ) |
| 212 |
111
|
mullidd |
|- ( u e. ( -u 1 (,) 1 ) -> ( 1 x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) = ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) |
| 213 |
190 111 198
|
divcld |
|- ( u e. ( -u 1 (,) 1 ) -> ( -u u / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) e. CC ) |
| 214 |
213 61
|
mulcomd |
|- ( u e. ( -u 1 (,) 1 ) -> ( ( -u u / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) x. u ) = ( u x. ( -u u / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) ) |
| 215 |
61 190 111 198
|
divassd |
|- ( u e. ( -u 1 (,) 1 ) -> ( ( u x. -u u ) / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) = ( u x. ( -u u / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) ) |
| 216 |
61 61
|
mulneg2d |
|- ( u e. ( -u 1 (,) 1 ) -> ( u x. -u u ) = -u ( u x. u ) ) |
| 217 |
61
|
sqvald |
|- ( u e. ( -u 1 (,) 1 ) -> ( u ^ 2 ) = ( u x. u ) ) |
| 218 |
217
|
negeqd |
|- ( u e. ( -u 1 (,) 1 ) -> -u ( u ^ 2 ) = -u ( u x. u ) ) |
| 219 |
216 218
|
eqtr4d |
|- ( u e. ( -u 1 (,) 1 ) -> ( u x. -u u ) = -u ( u ^ 2 ) ) |
| 220 |
219
|
oveq1d |
|- ( u e. ( -u 1 (,) 1 ) -> ( ( u x. -u u ) / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) = ( -u ( u ^ 2 ) / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) |
| 221 |
214 215 220
|
3eqtr2d |
|- ( u e. ( -u 1 (,) 1 ) -> ( ( -u u / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) x. u ) = ( -u ( u ^ 2 ) / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) |
| 222 |
212 221
|
oveq12d |
|- ( u e. ( -u 1 (,) 1 ) -> ( ( 1 x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) + ( ( -u u / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) x. u ) ) = ( ( sqrt ` ( 1 - ( u ^ 2 ) ) ) + ( -u ( u ^ 2 ) / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) ) |
| 223 |
61
|
sqcld |
|- ( u e. ( -u 1 (,) 1 ) -> ( u ^ 2 ) e. CC ) |
| 224 |
223
|
negcld |
|- ( u e. ( -u 1 (,) 1 ) -> -u ( u ^ 2 ) e. CC ) |
| 225 |
224 111 198
|
divcld |
|- ( u e. ( -u 1 (,) 1 ) -> ( -u ( u ^ 2 ) / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) e. CC ) |
| 226 |
111 225
|
addcomd |
|- ( u e. ( -u 1 (,) 1 ) -> ( ( sqrt ` ( 1 - ( u ^ 2 ) ) ) + ( -u ( u ^ 2 ) / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) = ( ( -u ( u ^ 2 ) / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) + ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) |
| 227 |
222 226
|
eqtrd |
|- ( u e. ( -u 1 (,) 1 ) -> ( ( 1 x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) + ( ( -u u / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) x. u ) ) = ( ( -u ( u ^ 2 ) / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) + ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) |
| 228 |
227
|
oveq2d |
|- ( u e. ( -u 1 (,) 1 ) -> ( ( 1 / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) + ( ( 1 x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) + ( ( -u u / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) x. u ) ) ) = ( ( 1 / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) + ( ( -u ( u ^ 2 ) / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) + ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) ) |
| 229 |
111
|
2timesd |
|- ( u e. ( -u 1 (,) 1 ) -> ( 2 x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) = ( ( sqrt ` ( 1 - ( u ^ 2 ) ) ) + ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) |
| 230 |
64 65
|
negsubd |
|- ( u e. CC -> ( 1 + -u ( u ^ 2 ) ) = ( 1 - ( u ^ 2 ) ) ) |
| 231 |
66
|
sqsqrtd |
|- ( u e. CC -> ( ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ^ 2 ) = ( 1 - ( u ^ 2 ) ) ) |
| 232 |
67
|
sqvald |
|- ( u e. CC -> ( ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ^ 2 ) = ( ( sqrt ` ( 1 - ( u ^ 2 ) ) ) x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) |
| 233 |
230 231 232
|
3eqtr2d |
|- ( u e. CC -> ( 1 + -u ( u ^ 2 ) ) = ( ( sqrt ` ( 1 - ( u ^ 2 ) ) ) x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) |
| 234 |
61 233
|
syl |
|- ( u e. ( -u 1 (,) 1 ) -> ( 1 + -u ( u ^ 2 ) ) = ( ( sqrt ` ( 1 - ( u ^ 2 ) ) ) x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) |
| 235 |
234
|
oveq1d |
|- ( u e. ( -u 1 (,) 1 ) -> ( ( 1 + -u ( u ^ 2 ) ) / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) = ( ( ( sqrt ` ( 1 - ( u ^ 2 ) ) ) x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) |
| 236 |
|
1cnd |
|- ( u e. ( -u 1 (,) 1 ) -> 1 e. CC ) |
| 237 |
236 224 111 198
|
divdird |
|- ( u e. ( -u 1 (,) 1 ) -> ( ( 1 + -u ( u ^ 2 ) ) / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) = ( ( 1 / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) + ( -u ( u ^ 2 ) / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) ) |
| 238 |
111 111 198
|
divcan3d |
|- ( u e. ( -u 1 (,) 1 ) -> ( ( ( sqrt ` ( 1 - ( u ^ 2 ) ) ) x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) = ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) |
| 239 |
235 237 238
|
3eqtr3rd |
|- ( u e. ( -u 1 (,) 1 ) -> ( sqrt ` ( 1 - ( u ^ 2 ) ) ) = ( ( 1 / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) + ( -u ( u ^ 2 ) / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) ) |
| 240 |
239
|
oveq1d |
|- ( u e. ( -u 1 (,) 1 ) -> ( ( sqrt ` ( 1 - ( u ^ 2 ) ) ) + ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) = ( ( ( 1 / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) + ( -u ( u ^ 2 ) / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) + ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) |
| 241 |
111 198
|
reccld |
|- ( u e. ( -u 1 (,) 1 ) -> ( 1 / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) e. CC ) |
| 242 |
241 225 111
|
addassd |
|- ( u e. ( -u 1 (,) 1 ) -> ( ( ( 1 / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) + ( -u ( u ^ 2 ) / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) + ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) = ( ( 1 / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) + ( ( -u ( u ^ 2 ) / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) + ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) ) |
| 243 |
229 240 242
|
3eqtrrd |
|- ( u e. ( -u 1 (,) 1 ) -> ( ( 1 / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) + ( ( -u ( u ^ 2 ) / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) + ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) = ( 2 x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) |
| 244 |
228 243
|
eqtrd |
|- ( u e. ( -u 1 (,) 1 ) -> ( ( 1 / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) + ( ( 1 x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) + ( ( -u u / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) x. u ) ) ) = ( 2 x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) |
| 245 |
244
|
mpteq2ia |
|- ( u e. ( -u 1 (,) 1 ) |-> ( ( 1 / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) + ( ( 1 x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) + ( ( -u u / ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) x. u ) ) ) ) = ( u e. ( -u 1 (,) 1 ) |-> ( 2 x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) |
| 246 |
211 245
|
eqtrdi |
|- ( R e. RR+ -> ( RR _D ( u e. ( -u 1 (,) 1 ) |-> ( ( arcsin ` u ) + ( u x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) ) ) = ( u e. ( -u 1 (,) 1 ) |-> ( 2 x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) ) |
| 247 |
|
fveq2 |
|- ( u = ( t / R ) -> ( arcsin ` u ) = ( arcsin ` ( t / R ) ) ) |
| 248 |
|
id |
|- ( u = ( t / R ) -> u = ( t / R ) ) |
| 249 |
|
oveq1 |
|- ( u = ( t / R ) -> ( u ^ 2 ) = ( ( t / R ) ^ 2 ) ) |
| 250 |
249
|
oveq2d |
|- ( u = ( t / R ) -> ( 1 - ( u ^ 2 ) ) = ( 1 - ( ( t / R ) ^ 2 ) ) ) |
| 251 |
250
|
fveq2d |
|- ( u = ( t / R ) -> ( sqrt ` ( 1 - ( u ^ 2 ) ) ) = ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) |
| 252 |
248 251
|
oveq12d |
|- ( u = ( t / R ) -> ( u x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) = ( ( t / R ) x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) |
| 253 |
247 252
|
oveq12d |
|- ( u = ( t / R ) -> ( ( arcsin ` u ) + ( u x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) ) = ( ( arcsin ` ( t / R ) ) + ( ( t / R ) x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) ) |
| 254 |
251
|
oveq2d |
|- ( u = ( t / R ) -> ( 2 x. ( sqrt ` ( 1 - ( u ^ 2 ) ) ) ) = ( 2 x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) |
| 255 |
2 2 58 59 71 72 84 246 253 254
|
dvmptco |
|- ( R e. RR+ -> ( RR _D ( t e. ( -u R (,) R ) |-> ( ( arcsin ` ( t / R ) ) + ( ( t / R ) x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) ) ) = ( t e. ( -u R (,) R ) |-> ( ( 2 x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) x. ( 1 / R ) ) ) ) |
| 256 |
6
|
sqcld |
|- ( R e. RR+ -> ( R ^ 2 ) e. CC ) |
| 257 |
2 18 19 255 256
|
dvmptcmul |
|- ( R e. RR+ -> ( RR _D ( t e. ( -u R (,) R ) |-> ( ( R ^ 2 ) x. ( ( arcsin ` ( t / R ) ) + ( ( t / R ) x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) ) ) ) = ( t e. ( -u R (,) R ) |-> ( ( R ^ 2 ) x. ( ( 2 x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) x. ( 1 / R ) ) ) ) ) |
| 258 |
|
2cnd |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> 2 e. CC ) |
| 259 |
258 16
|
mulcld |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( 2 x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) e. CC ) |
| 260 |
6 8
|
reccld |
|- ( R e. RR+ -> ( 1 / R ) e. CC ) |
| 261 |
260
|
adantr |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( 1 / R ) e. CC ) |
| 262 |
259 261
|
mulcomd |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( ( 2 x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) x. ( 1 / R ) ) = ( ( 1 / R ) x. ( 2 x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) ) |
| 263 |
262
|
oveq2d |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( ( R ^ 2 ) x. ( ( 2 x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) x. ( 1 / R ) ) ) = ( ( R ^ 2 ) x. ( ( 1 / R ) x. ( 2 x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) ) ) |
| 264 |
256
|
adantr |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( R ^ 2 ) e. CC ) |
| 265 |
264 261 259
|
mulassd |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( ( ( R ^ 2 ) x. ( 1 / R ) ) x. ( 2 x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) = ( ( R ^ 2 ) x. ( ( 1 / R ) x. ( 2 x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) ) ) |
| 266 |
6
|
sqvald |
|- ( R e. RR+ -> ( R ^ 2 ) = ( R x. R ) ) |
| 267 |
266
|
oveq1d |
|- ( R e. RR+ -> ( ( R ^ 2 ) / R ) = ( ( R x. R ) / R ) ) |
| 268 |
256 6 8
|
divrecd |
|- ( R e. RR+ -> ( ( R ^ 2 ) / R ) = ( ( R ^ 2 ) x. ( 1 / R ) ) ) |
| 269 |
6 6 8
|
divcan3d |
|- ( R e. RR+ -> ( ( R x. R ) / R ) = R ) |
| 270 |
267 268 269
|
3eqtr3d |
|- ( R e. RR+ -> ( ( R ^ 2 ) x. ( 1 / R ) ) = R ) |
| 271 |
270
|
adantr |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( ( R ^ 2 ) x. ( 1 / R ) ) = R ) |
| 272 |
271
|
oveq1d |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( ( ( R ^ 2 ) x. ( 1 / R ) ) x. ( 2 x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) = ( R x. ( 2 x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) ) |
| 273 |
7 258 16
|
mul12d |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( R x. ( 2 x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) = ( 2 x. ( R x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) ) |
| 274 |
20
|
resqcld |
|- ( R e. RR+ -> ( R ^ 2 ) e. RR ) |
| 275 |
274
|
adantr |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( R ^ 2 ) e. RR ) |
| 276 |
20
|
sqge0d |
|- ( R e. RR+ -> 0 <_ ( R ^ 2 ) ) |
| 277 |
276
|
adantr |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> 0 <_ ( R ^ 2 ) ) |
| 278 |
|
1red |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> 1 e. RR ) |
| 279 |
3
|
adantl |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> t e. RR ) |
| 280 |
20
|
adantr |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> R e. RR ) |
| 281 |
279 280 9
|
redivcld |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( t / R ) e. RR ) |
| 282 |
281
|
resqcld |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( ( t / R ) ^ 2 ) e. RR ) |
| 283 |
278 282
|
resubcld |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( 1 - ( ( t / R ) ^ 2 ) ) e. RR ) |
| 284 |
|
0red |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> 0 e. RR ) |
| 285 |
26 27
|
absltd |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( abs ` t ) < R <-> ( -u R < t /\ t < R ) ) ) |
| 286 |
73
|
abscld |
|- ( t e. RR -> ( abs ` t ) e. RR ) |
| 287 |
286
|
adantl |
|- ( ( R e. RR+ /\ t e. RR ) -> ( abs ` t ) e. RR ) |
| 288 |
73
|
absge0d |
|- ( t e. RR -> 0 <_ ( abs ` t ) ) |
| 289 |
288
|
adantl |
|- ( ( R e. RR+ /\ t e. RR ) -> 0 <_ ( abs ` t ) ) |
| 290 |
|
rpge0 |
|- ( R e. RR+ -> 0 <_ R ) |
| 291 |
290
|
adantr |
|- ( ( R e. RR+ /\ t e. RR ) -> 0 <_ R ) |
| 292 |
287 27 289 291
|
lt2sqd |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( abs ` t ) < R <-> ( ( abs ` t ) ^ 2 ) < ( R ^ 2 ) ) ) |
| 293 |
|
absresq |
|- ( t e. RR -> ( ( abs ` t ) ^ 2 ) = ( t ^ 2 ) ) |
| 294 |
293
|
adantl |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( abs ` t ) ^ 2 ) = ( t ^ 2 ) ) |
| 295 |
256
|
adantr |
|- ( ( R e. RR+ /\ t e. RR ) -> ( R ^ 2 ) e. CC ) |
| 296 |
295
|
mulridd |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( R ^ 2 ) x. 1 ) = ( R ^ 2 ) ) |
| 297 |
296
|
eqcomd |
|- ( ( R e. RR+ /\ t e. RR ) -> ( R ^ 2 ) = ( ( R ^ 2 ) x. 1 ) ) |
| 298 |
294 297
|
breq12d |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( ( abs ` t ) ^ 2 ) < ( R ^ 2 ) <-> ( t ^ 2 ) < ( ( R ^ 2 ) x. 1 ) ) ) |
| 299 |
6
|
adantr |
|- ( ( R e. RR+ /\ t e. RR ) -> R e. CC ) |
| 300 |
74 299 28
|
sqdivd |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( t / R ) ^ 2 ) = ( ( t ^ 2 ) / ( R ^ 2 ) ) ) |
| 301 |
300
|
breq1d |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( ( t / R ) ^ 2 ) < 1 <-> ( ( t ^ 2 ) / ( R ^ 2 ) ) < 1 ) ) |
| 302 |
29
|
resqcld |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( t / R ) ^ 2 ) e. RR ) |
| 303 |
302 41
|
posdifd |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( ( t / R ) ^ 2 ) < 1 <-> 0 < ( 1 - ( ( t / R ) ^ 2 ) ) ) ) |
| 304 |
|
resqcl |
|- ( t e. RR -> ( t ^ 2 ) e. RR ) |
| 305 |
304
|
adantl |
|- ( ( R e. RR+ /\ t e. RR ) -> ( t ^ 2 ) e. RR ) |
| 306 |
|
rpgt0 |
|- ( R e. RR+ -> 0 < R ) |
| 307 |
|
0red |
|- ( R e. RR+ -> 0 e. RR ) |
| 308 |
|
0le0 |
|- 0 <_ 0 |
| 309 |
308
|
a1i |
|- ( R e. RR+ -> 0 <_ 0 ) |
| 310 |
307 20 309 290
|
lt2sqd |
|- ( R e. RR+ -> ( 0 < R <-> ( 0 ^ 2 ) < ( R ^ 2 ) ) ) |
| 311 |
|
sq0 |
|- ( 0 ^ 2 ) = 0 |
| 312 |
311
|
a1i |
|- ( R e. RR+ -> ( 0 ^ 2 ) = 0 ) |
| 313 |
312
|
breq1d |
|- ( R e. RR+ -> ( ( 0 ^ 2 ) < ( R ^ 2 ) <-> 0 < ( R ^ 2 ) ) ) |
| 314 |
310 313
|
bitrd |
|- ( R e. RR+ -> ( 0 < R <-> 0 < ( R ^ 2 ) ) ) |
| 315 |
306 314
|
mpbid |
|- ( R e. RR+ -> 0 < ( R ^ 2 ) ) |
| 316 |
274 315
|
elrpd |
|- ( R e. RR+ -> ( R ^ 2 ) e. RR+ ) |
| 317 |
316
|
adantr |
|- ( ( R e. RR+ /\ t e. RR ) -> ( R ^ 2 ) e. RR+ ) |
| 318 |
305 41 317
|
ltdivmuld |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( ( t ^ 2 ) / ( R ^ 2 ) ) < 1 <-> ( t ^ 2 ) < ( ( R ^ 2 ) x. 1 ) ) ) |
| 319 |
301 303 318
|
3bitr3rd |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( t ^ 2 ) < ( ( R ^ 2 ) x. 1 ) <-> 0 < ( 1 - ( ( t / R ) ^ 2 ) ) ) ) |
| 320 |
292 298 319
|
3bitrd |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( abs ` t ) < R <-> 0 < ( 1 - ( ( t / R ) ^ 2 ) ) ) ) |
| 321 |
285 320
|
bitr3d |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( -u R < t /\ t < R ) <-> 0 < ( 1 - ( ( t / R ) ^ 2 ) ) ) ) |
| 322 |
321
|
biimpd |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( -u R < t /\ t < R ) -> 0 < ( 1 - ( ( t / R ) ^ 2 ) ) ) ) |
| 323 |
322
|
exp4b |
|- ( R e. RR+ -> ( t e. RR -> ( -u R < t -> ( t < R -> 0 < ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) ) |
| 324 |
323
|
3impd |
|- ( R e. RR+ -> ( ( t e. RR /\ -u R < t /\ t < R ) -> 0 < ( 1 - ( ( t / R ) ^ 2 ) ) ) ) |
| 325 |
25 324
|
sylbid |
|- ( R e. RR+ -> ( t e. ( -u R (,) R ) -> 0 < ( 1 - ( ( t / R ) ^ 2 ) ) ) ) |
| 326 |
325
|
imp |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> 0 < ( 1 - ( ( t / R ) ^ 2 ) ) ) |
| 327 |
284 283 326
|
ltled |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> 0 <_ ( 1 - ( ( t / R ) ^ 2 ) ) ) |
| 328 |
275 277 283 327
|
sqrtmuld |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( sqrt ` ( ( R ^ 2 ) x. ( 1 - ( ( t / R ) ^ 2 ) ) ) ) = ( ( sqrt ` ( R ^ 2 ) ) x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) |
| 329 |
264 13 14
|
subdid |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( ( R ^ 2 ) x. ( 1 - ( ( t / R ) ^ 2 ) ) ) = ( ( ( R ^ 2 ) x. 1 ) - ( ( R ^ 2 ) x. ( ( t / R ) ^ 2 ) ) ) ) |
| 330 |
264
|
mulridd |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( ( R ^ 2 ) x. 1 ) = ( R ^ 2 ) ) |
| 331 |
5 7 9
|
sqdivd |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( ( t / R ) ^ 2 ) = ( ( t ^ 2 ) / ( R ^ 2 ) ) ) |
| 332 |
331
|
oveq2d |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( ( R ^ 2 ) x. ( ( t / R ) ^ 2 ) ) = ( ( R ^ 2 ) x. ( ( t ^ 2 ) / ( R ^ 2 ) ) ) ) |
| 333 |
4
|
sqcld |
|- ( t e. ( -u R (,) R ) -> ( t ^ 2 ) e. CC ) |
| 334 |
333
|
adantl |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( t ^ 2 ) e. CC ) |
| 335 |
|
sqne0 |
|- ( R e. CC -> ( ( R ^ 2 ) =/= 0 <-> R =/= 0 ) ) |
| 336 |
6 335
|
syl |
|- ( R e. RR+ -> ( ( R ^ 2 ) =/= 0 <-> R =/= 0 ) ) |
| 337 |
8 336
|
mpbird |
|- ( R e. RR+ -> ( R ^ 2 ) =/= 0 ) |
| 338 |
337
|
adantr |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( R ^ 2 ) =/= 0 ) |
| 339 |
334 264 338
|
divcan2d |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( ( R ^ 2 ) x. ( ( t ^ 2 ) / ( R ^ 2 ) ) ) = ( t ^ 2 ) ) |
| 340 |
332 339
|
eqtrd |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( ( R ^ 2 ) x. ( ( t / R ) ^ 2 ) ) = ( t ^ 2 ) ) |
| 341 |
330 340
|
oveq12d |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( ( ( R ^ 2 ) x. 1 ) - ( ( R ^ 2 ) x. ( ( t / R ) ^ 2 ) ) ) = ( ( R ^ 2 ) - ( t ^ 2 ) ) ) |
| 342 |
329 341
|
eqtrd |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( ( R ^ 2 ) x. ( 1 - ( ( t / R ) ^ 2 ) ) ) = ( ( R ^ 2 ) - ( t ^ 2 ) ) ) |
| 343 |
342
|
fveq2d |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( sqrt ` ( ( R ^ 2 ) x. ( 1 - ( ( t / R ) ^ 2 ) ) ) ) = ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) |
| 344 |
20 290
|
sqrtsqd |
|- ( R e. RR+ -> ( sqrt ` ( R ^ 2 ) ) = R ) |
| 345 |
344
|
adantr |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( sqrt ` ( R ^ 2 ) ) = R ) |
| 346 |
345
|
oveq1d |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( ( sqrt ` ( R ^ 2 ) ) x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) = ( R x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) |
| 347 |
328 343 346
|
3eqtr3rd |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( R x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) = ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) |
| 348 |
347
|
oveq2d |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( 2 x. ( R x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) = ( 2 x. ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) |
| 349 |
272 273 348
|
3eqtrd |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( ( ( R ^ 2 ) x. ( 1 / R ) ) x. ( 2 x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) = ( 2 x. ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) |
| 350 |
263 265 349
|
3eqtr2d |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( ( R ^ 2 ) x. ( ( 2 x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) x. ( 1 / R ) ) ) = ( 2 x. ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) |
| 351 |
350
|
mpteq2dva |
|- ( R e. RR+ -> ( t e. ( -u R (,) R ) |-> ( ( R ^ 2 ) x. ( ( 2 x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) x. ( 1 / R ) ) ) ) = ( t e. ( -u R (,) R ) |-> ( 2 x. ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) ) |
| 352 |
257 351
|
eqtrd |
|- ( R e. RR+ -> ( RR _D ( t e. ( -u R (,) R ) |-> ( ( R ^ 2 ) x. ( ( arcsin ` ( t / R ) ) + ( ( t / R ) x. ( sqrt ` ( 1 - ( ( t / R ) ^ 2 ) ) ) ) ) ) ) ) = ( t e. ( -u R (,) R ) |-> ( 2 x. ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) ) |