Metamath Proof Explorer


Theorem areacirclem1

Description: Antiderivative of cross-section of circle. (Contributed by Brendan Leahy, 28-Aug-2017) (Revised by Brendan Leahy, 11-Jul-2018)

Ref Expression
Assertion areacirclem1 R + dt R R R 2 arcsin t R + t R 1 t R 2 d t = t R R 2 R 2 t 2

Proof

Step Hyp Ref Expression
1 reelprrecn
2 1 a1i R +
3 elioore t R R t
4 3 recnd t R R t
5 4 adantl R + t R R t
6 rpcn R + R
7 6 adantr R + t R R R
8 rpne0 R + R 0
9 8 adantr R + t R R R 0
10 5 7 9 divcld R + t R R t R
11 asincl t R arcsin t R
12 10 11 syl R + t R R arcsin t R
13 1cnd R + t R R 1
14 10 sqcld R + t R R t R 2
15 13 14 subcld R + t R R 1 t R 2
16 15 sqrtcld R + t R R 1 t R 2
17 10 16 mulcld R + t R R t R 1 t R 2
18 12 17 addcld R + t R R arcsin t R + t R 1 t R 2
19 ovexd R + t R R 2 1 t R 2 1 R V
20 rpre R + R
21 20 renegcld R + R
22 21 rexrd R + R *
23 rpxr R + R *
24 elioo2 R * R * t R R t R < t t < R
25 22 23 24 syl2anc R + t R R t R < t t < R
26 simpr R + t t
27 20 adantr R + t R
28 8 adantr R + t R 0
29 26 27 28 redivcld R + t t R
30 29 a1d R + t R < t t < R t R
31 6 mulm1d R + -1 R = R
32 31 adantr R + t -1 R = R
33 32 breq1d R + t -1 R < t R < t
34 neg1rr 1
35 34 a1i R + t 1
36 simpl R + t R +
37 35 26 36 ltmuldivd R + t -1 R < t 1 < t R
38 33 37 bitr3d R + t R < t 1 < t R
39 38 biimpd R + t R < t 1 < t R
40 39 adantrd R + t R < t t < R 1 < t R
41 1red R + t 1
42 26 41 36 ltdivmuld R + t t R < 1 t < R 1
43 6 mulid1d R + R 1 = R
44 43 adantr R + t R 1 = R
45 44 breq2d R + t t < R 1 t < R
46 42 45 bitr2d R + t t < R t R < 1
47 46 biimpd R + t t < R t R < 1
48 47 adantld R + t R < t t < R t R < 1
49 30 40 48 3jcad R + t R < t t < R t R 1 < t R t R < 1
50 49 exp4b R + t R < t t < R t R 1 < t R t R < 1
51 50 3impd R + t R < t t < R t R 1 < t R t R < 1
52 25 51 sylbid R + t R R t R 1 < t R t R < 1
53 52 imp R + t R R t R 1 < t R t R < 1
54 34 rexri 1 *
55 1xr 1 *
56 elioo2 1 * 1 * t R 1 1 t R 1 < t R t R < 1
57 54 55 56 mp2an t R 1 1 t R 1 < t R t R < 1
58 53 57 sylibr R + t R R t R 1 1
59 ovexd R + t R R 1 R V
60 elioore u 1 1 u
61 60 recnd u 1 1 u
62 asincl u arcsin u
63 id u u
64 1cnd u 1
65 sqcl u u 2
66 64 65 subcld u 1 u 2
67 66 sqrtcld u 1 u 2
68 63 67 mulcld u u 1 u 2
69 62 68 addcld u arcsin u + u 1 u 2
70 61 69 syl u 1 1 arcsin u + u 1 u 2
71 70 adantl R + u 1 1 arcsin u + u 1 u 2
72 ovexd R + u 1 1 2 1 u 2 V
73 recn t t
74 73 adantl R + t t
75 1cnd R + t 1
76 2 dvmptid R + dt t d t = t 1
77 ioossre R R
78 77 a1i R + R R
79 eqid TopOpen fld = TopOpen fld
80 79 tgioo2 topGen ran . = TopOpen fld 𝑡
81 iooretop R R topGen ran .
82 81 a1i R + R R topGen ran .
83 2 74 75 76 78 80 79 82 dvmptres R + dt R R t d t = t R R 1
84 2 5 13 83 6 8 dvmptdivc R + dt R R t R d t = t R R 1 R
85 61 62 syl u 1 1 arcsin u
86 85 adantl R + u 1 1 arcsin u
87 ovexd R + u 1 1 1 1 u 2 V
88 asinf arcsin :
89 88 a1i R + arcsin :
90 ioossre 1 1
91 ax-resscn
92 90 91 sstri 1 1
93 92 a1i R + 1 1
94 89 93 feqresmpt R + arcsin 1 1 = u 1 1 arcsin u
95 94 oveq2d R + D arcsin 1 1 = du 1 1 arcsin u d u
96 dvreasin D arcsin 1 1 = u 1 1 1 1 u 2
97 95 96 eqtr3di R + du 1 1 arcsin u d u = u 1 1 1 1 u 2
98 61 68 syl u 1 1 u 1 u 2
99 98 adantl R + u 1 1 u 1 u 2
100 ovexd R + u 1 1 1 1 u 2 + u 1 u 2 u V
101 61 adantl R + u 1 1 u
102 1cnd R + u 1 1 1
103 recn u u
104 103 adantl R + u u
105 1cnd R + u 1
106 2 dvmptid R + du u d u = u 1
107 90 a1i R + 1 1
108 iooretop 1 1 topGen ran .
109 108 a1i R + 1 1 topGen ran .
110 2 104 105 106 107 80 79 109 dvmptres R + du 1 1 u d u = u 1 1 1
111 61 67 syl u 1 1 1 u 2
112 111 adantl R + u 1 1 1 u 2
113 ovexd R + u 1 1 u 1 u 2 V
114 1red u 1 1 1
115 60 resqcld u 1 1 u 2
116 114 115 resubcld u 1 1 1 u 2
117 elioo2 1 * 1 * u 1 1 u 1 < u u < 1
118 54 55 117 mp2an u 1 1 u 1 < u u < 1
119 id u u
120 1red u 1
121 119 120 absltd u u < 1 1 < u u < 1
122 103 abscld u u
123 103 absge0d u 0 u
124 0le1 0 1
125 124 a1i u 0 1
126 122 120 123 125 lt2sqd u u < 1 u 2 < 1 2
127 absresq u u 2 = u 2
128 sq1 1 2 = 1
129 128 a1i u 1 2 = 1
130 127 129 breq12d u u 2 < 1 2 u 2 < 1
131 resqcl u u 2
132 131 120 posdifd u u 2 < 1 0 < 1 u 2
133 126 130 132 3bitrd u u < 1 0 < 1 u 2
134 121 133 bitr3d u 1 < u u < 1 0 < 1 u 2
135 134 biimpd u 1 < u u < 1 0 < 1 u 2
136 135 3impib u 1 < u u < 1 0 < 1 u 2
137 118 136 sylbi u 1 1 0 < 1 u 2
138 116 137 elrpd u 1 1 1 u 2 +
139 138 adantl R + u 1 1 1 u 2 +
140 negex 2 u V
141 140 a1i R + u 1 1 2 u V
142 rpcn v + v
143 142 sqrtcld v + v
144 143 adantl R + v + v
145 ovexd R + v + 1 2 v V
146 1cnd u 1
147 103 sqcld u u 2
148 146 147 subcld u 1 u 2
149 148 adantl R + u 1 u 2
150 140 a1i R + u 2 u V
151 0red R + u 0
152 1cnd R + 1
153 2 152 dvmptc R + du 1 d u = u 0
154 147 adantl R + u u 2
155 ovexd R + u 2 u V
156 79 cnfldtopon TopOpen fld TopOn
157 toponmax TopOpen fld TopOn TopOpen fld
158 156 157 mp1i R + TopOpen fld
159 df-ss =
160 91 159 mpbi =
161 160 a1i R + =
162 65 adantl R + u u 2
163 ovexd R + u 2 u V
164 2nn 2
165 dvexp 2 du u 2 d u = u 2 u 2 1
166 164 165 ax-mp du u 2 d u = u 2 u 2 1
167 2m1e1 2 1 = 1
168 167 oveq2i u 2 1 = u 1
169 exp1 u u 1 = u
170 168 169 eqtrid u u 2 1 = u
171 170 oveq2d u 2 u 2 1 = 2 u
172 171 mpteq2ia u 2 u 2 1 = u 2 u
173 166 172 eqtri du u 2 d u = u 2 u
174 173 a1i R + du u 2 d u = u 2 u
175 79 2 158 161 162 163 174 dvmptres3 R + du u 2 d u = u 2 u
176 2 105 151 153 154 155 175 dvmptsub R + du 1 u 2 d u = u 0 2 u
177 df-neg 2 u = 0 2 u
178 177 mpteq2i u 2 u = u 0 2 u
179 176 178 eqtr4di R + du 1 u 2 d u = u 2 u
180 2 149 150 179 107 80 79 109 dvmptres R + du 1 1 1 u 2 d u = u 1 1 2 u
181 dvsqrt dv + v d v = v + 1 2 v
182 181 a1i R + dv + v d v = v + 1 2 v
183 fveq2 v = 1 u 2 v = 1 u 2
184 183 oveq2d v = 1 u 2 2 v = 2 1 u 2
185 184 oveq2d v = 1 u 2 1 2 v = 1 2 1 u 2
186 2 2 139 141 144 145 180 182 183 185 dvmptco R + du 1 1 1 u 2 d u = u 1 1 1 2 1 u 2 2 u
187 2cnd u 1 1 2
188 187 61 mulneg2d u 1 1 2 u = 2 u
189 188 oveq1d u 1 1 2 u 2 1 u 2 = 2 u 2 1 u 2
190 61 negcld u 1 1 u
191 137 gt0ne0d u 1 1 1 u 2 0
192 61 66 syl u 1 1 1 u 2
193 192 adantr u 1 1 1 u 2 = 0 1 u 2
194 simpr u 1 1 1 u 2 = 0 1 u 2 = 0
195 193 194 sqr00d u 1 1 1 u 2 = 0 1 u 2 = 0
196 195 ex u 1 1 1 u 2 = 0 1 u 2 = 0
197 196 necon3d u 1 1 1 u 2 0 1 u 2 0
198 191 197 mpd u 1 1 1 u 2 0
199 2ne0 2 0
200 199 a1i u 1 1 2 0
201 190 111 187 198 200 divcan5d u 1 1 2 u 2 1 u 2 = u 1 u 2
202 187 61 mulcld u 1 1 2 u
203 202 negcld u 1 1 2 u
204 187 111 mulcld u 1 1 2 1 u 2
205 187 111 200 198 mulne0d u 1 1 2 1 u 2 0
206 203 204 205 divrec2d u 1 1 2 u 2 1 u 2 = 1 2 1 u 2 2 u
207 189 201 206 3eqtr3rd u 1 1 1 2 1 u 2 2 u = u 1 u 2
208 207 mpteq2ia u 1 1 1 2 1 u 2 2 u = u 1 1 u 1 u 2
209 186 208 eqtrdi R + du 1 1 1 u 2 d u = u 1 1 u 1 u 2
210 2 101 102 110 112 113 209 dvmptmul R + du 1 1 u 1 u 2 d u = u 1 1 1 1 u 2 + u 1 u 2 u
211 2 86 87 97 99 100 210 dvmptadd R + du 1 1 arcsin u + u 1 u 2 d u = u 1 1 1 1 u 2 + 1 1 u 2 + u 1 u 2 u
212 111 mulid2d u 1 1 1 1 u 2 = 1 u 2
213 190 111 198 divcld u 1 1 u 1 u 2
214 213 61 mulcomd u 1 1 u 1 u 2 u = u u 1 u 2
215 61 190 111 198 divassd u 1 1 u u 1 u 2 = u u 1 u 2
216 61 61 mulneg2d u 1 1 u u = u u
217 61 sqvald u 1 1 u 2 = u u
218 217 negeqd u 1 1 u 2 = u u
219 216 218 eqtr4d u 1 1 u u = u 2
220 219 oveq1d u 1 1 u u 1 u 2 = u 2 1 u 2
221 214 215 220 3eqtr2d u 1 1 u 1 u 2 u = u 2 1 u 2
222 212 221 oveq12d u 1 1 1 1 u 2 + u 1 u 2 u = 1 u 2 + u 2 1 u 2
223 61 sqcld u 1 1 u 2
224 223 negcld u 1 1 u 2
225 224 111 198 divcld u 1 1 u 2 1 u 2
226 111 225 addcomd u 1 1 1 u 2 + u 2 1 u 2 = u 2 1 u 2 + 1 u 2
227 222 226 eqtrd u 1 1 1 1 u 2 + u 1 u 2 u = u 2 1 u 2 + 1 u 2
228 227 oveq2d u 1 1 1 1 u 2 + 1 1 u 2 + u 1 u 2 u = 1 1 u 2 + u 2 1 u 2 + 1 u 2
229 111 2timesd u 1 1 2 1 u 2 = 1 u 2 + 1 u 2
230 64 65 negsubd u 1 + u 2 = 1 u 2
231 66 sqsqrtd u 1 u 2 2 = 1 u 2
232 67 sqvald u 1 u 2 2 = 1 u 2 1 u 2
233 230 231 232 3eqtr2d u 1 + u 2 = 1 u 2 1 u 2
234 61 233 syl u 1 1 1 + u 2 = 1 u 2 1 u 2
235 234 oveq1d u 1 1 1 + u 2 1 u 2 = 1 u 2 1 u 2 1 u 2
236 1cnd u 1 1 1
237 236 224 111 198 divdird u 1 1 1 + u 2 1 u 2 = 1 1 u 2 + u 2 1 u 2
238 111 111 198 divcan3d u 1 1 1 u 2 1 u 2 1 u 2 = 1 u 2
239 235 237 238 3eqtr3rd u 1 1 1 u 2 = 1 1 u 2 + u 2 1 u 2
240 239 oveq1d u 1 1 1 u 2 + 1 u 2 = 1 1 u 2 + u 2 1 u 2 + 1 u 2
241 111 198 reccld u 1 1 1 1 u 2
242 241 225 111 addassd u 1 1 1 1 u 2 + u 2 1 u 2 + 1 u 2 = 1 1 u 2 + u 2 1 u 2 + 1 u 2
243 229 240 242 3eqtrrd u 1 1 1 1 u 2 + u 2 1 u 2 + 1 u 2 = 2 1 u 2
244 228 243 eqtrd u 1 1 1 1 u 2 + 1 1 u 2 + u 1 u 2 u = 2 1 u 2
245 244 mpteq2ia u 1 1 1 1 u 2 + 1 1 u 2 + u 1 u 2 u = u 1 1 2 1 u 2
246 211 245 eqtrdi R + du 1 1 arcsin u + u 1 u 2 d u = u 1 1 2 1 u 2
247 fveq2 u = t R arcsin u = arcsin t R
248 id u = t R u = t R
249 oveq1 u = t R u 2 = t R 2
250 249 oveq2d u = t R 1 u 2 = 1 t R 2
251 250 fveq2d u = t R 1 u 2 = 1 t R 2
252 248 251 oveq12d u = t R u 1 u 2 = t R 1 t R 2
253 247 252 oveq12d u = t R arcsin u + u 1 u 2 = arcsin t R + t R 1 t R 2
254 251 oveq2d u = t R 2 1 u 2 = 2 1 t R 2
255 2 2 58 59 71 72 84 246 253 254 dvmptco R + dt R R arcsin t R + t R 1 t R 2 d t = t R R 2 1 t R 2 1 R
256 6 sqcld R + R 2
257 2 18 19 255 256 dvmptcmul R + dt R R R 2 arcsin t R + t R 1 t R 2 d t = t R R R 2 2 1 t R 2 1 R
258 2cnd R + t R R 2
259 258 16 mulcld R + t R R 2 1 t R 2
260 6 8 reccld R + 1 R
261 260 adantr R + t R R 1 R
262 259 261 mulcomd R + t R R 2 1 t R 2 1 R = 1 R 2 1 t R 2
263 262 oveq2d R + t R R R 2 2 1 t R 2 1 R = R 2 1 R 2 1 t R 2
264 256 adantr R + t R R R 2
265 264 261 259 mulassd R + t R R R 2 1 R 2 1 t R 2 = R 2 1 R 2 1 t R 2
266 6 sqvald R + R 2 = R R
267 266 oveq1d R + R 2 R = R R R
268 256 6 8 divrecd R + R 2 R = R 2 1 R
269 6 6 8 divcan3d R + R R R = R
270 267 268 269 3eqtr3d R + R 2 1 R = R
271 270 adantr R + t R R R 2 1 R = R
272 271 oveq1d R + t R R R 2 1 R 2 1 t R 2 = R 2 1 t R 2
273 7 258 16 mul12d R + t R R R 2 1 t R 2 = 2 R 1 t R 2
274 20 resqcld R + R 2
275 274 adantr R + t R R R 2
276 20 sqge0d R + 0 R 2
277 276 adantr R + t R R 0 R 2
278 1red R + t R R 1
279 3 adantl R + t R R t
280 20 adantr R + t R R R
281 279 280 9 redivcld R + t R R t R
282 281 resqcld R + t R R t R 2
283 278 282 resubcld R + t R R 1 t R 2
284 0red R + t R R 0
285 26 27 absltd R + t t < R R < t t < R
286 73 abscld t t
287 286 adantl R + t t
288 73 absge0d t 0 t
289 288 adantl R + t 0 t
290 rpge0 R + 0 R
291 290 adantr R + t 0 R
292 287 27 289 291 lt2sqd R + t t < R t 2 < R 2
293 absresq t t 2 = t 2
294 293 adantl R + t t 2 = t 2
295 256 adantr R + t R 2
296 295 mulid1d R + t R 2 1 = R 2
297 296 eqcomd R + t R 2 = R 2 1
298 294 297 breq12d R + t t 2 < R 2 t 2 < R 2 1
299 6 adantr R + t R
300 74 299 28 sqdivd R + t t R 2 = t 2 R 2
301 300 breq1d R + t t R 2 < 1 t 2 R 2 < 1
302 29 resqcld R + t t R 2
303 302 41 posdifd R + t t R 2 < 1 0 < 1 t R 2
304 resqcl t t 2
305 304 adantl R + t t 2
306 rpgt0 R + 0 < R
307 0red R + 0
308 0le0 0 0
309 308 a1i R + 0 0
310 307 20 309 290 lt2sqd R + 0 < R 0 2 < R 2
311 sq0 0 2 = 0
312 311 a1i R + 0 2 = 0
313 312 breq1d R + 0 2 < R 2 0 < R 2
314 310 313 bitrd R + 0 < R 0 < R 2
315 306 314 mpbid R + 0 < R 2
316 274 315 elrpd R + R 2 +
317 316 adantr R + t R 2 +
318 305 41 317 ltdivmuld R + t t 2 R 2 < 1 t 2 < R 2 1
319 301 303 318 3bitr3rd R + t t 2 < R 2 1 0 < 1 t R 2
320 292 298 319 3bitrd R + t t < R 0 < 1 t R 2
321 285 320 bitr3d R + t R < t t < R 0 < 1 t R 2
322 321 biimpd R + t R < t t < R 0 < 1 t R 2
323 322 exp4b R + t R < t t < R 0 < 1 t R 2
324 323 3impd R + t R < t t < R 0 < 1 t R 2
325 25 324 sylbid R + t R R 0 < 1 t R 2
326 325 imp R + t R R 0 < 1 t R 2
327 284 283 326 ltled R + t R R 0 1 t R 2
328 275 277 283 327 sqrtmuld R + t R R R 2 1 t R 2 = R 2 1 t R 2
329 264 13 14 subdid R + t R R R 2 1 t R 2 = R 2 1 R 2 t R 2
330 264 mulid1d R + t R R R 2 1 = R 2
331 5 7 9 sqdivd R + t R R t R 2 = t 2 R 2
332 331 oveq2d R + t R R R 2 t R 2 = R 2 t 2 R 2
333 4 sqcld t R R t 2
334 333 adantl R + t R R t 2
335 sqne0 R R 2 0 R 0
336 6 335 syl R + R 2 0 R 0
337 8 336 mpbird R + R 2 0
338 337 adantr R + t R R R 2 0
339 334 264 338 divcan2d R + t R R R 2 t 2 R 2 = t 2
340 332 339 eqtrd R + t R R R 2 t R 2 = t 2
341 330 340 oveq12d R + t R R R 2 1 R 2 t R 2 = R 2 t 2
342 329 341 eqtrd R + t R R R 2 1 t R 2 = R 2 t 2
343 342 fveq2d R + t R R R 2 1 t R 2 = R 2 t 2
344 20 290 sqrtsqd R + R 2 = R
345 344 adantr R + t R R R 2 = R
346 345 oveq1d R + t R R R 2 1 t R 2 = R 1 t R 2
347 328 343 346 3eqtr3rd R + t R R R 1 t R 2 = R 2 t 2
348 347 oveq2d R + t R R 2 R 1 t R 2 = 2 R 2 t 2
349 272 273 348 3eqtrd R + t R R R 2 1 R 2 1 t R 2 = 2 R 2 t 2
350 263 265 349 3eqtr2d R + t R R R 2 2 1 t R 2 1 R = 2 R 2 t 2
351 350 mpteq2dva R + t R R R 2 2 1 t R 2 1 R = t R R 2 R 2 t 2
352 257 351 eqtrd R + dt R R R 2 arcsin t R + t R 1 t R 2 d t = t R R 2 R 2 t 2