Metamath Proof Explorer


Theorem effsumlt

Description: The partial sums of the series expansion of the exponential function at a positive real number are bounded by the value of the function. (Contributed by Paul Chapman, 21-Aug-2007) (Revised by Mario Carneiro, 29-Apr-2014)

Ref Expression
Hypotheses effsumlt.1 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴𝑛 ) / ( ! ‘ 𝑛 ) ) )
effsumlt.2 ( 𝜑𝐴 ∈ ℝ+ )
effsumlt.3 ( 𝜑𝑁 ∈ ℕ0 )
Assertion effsumlt ( 𝜑 → ( seq 0 ( + , 𝐹 ) ‘ 𝑁 ) < ( exp ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 effsumlt.1 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴𝑛 ) / ( ! ‘ 𝑛 ) ) )
2 effsumlt.2 ( 𝜑𝐴 ∈ ℝ+ )
3 effsumlt.3 ( 𝜑𝑁 ∈ ℕ0 )
4 nn0uz 0 = ( ℤ ‘ 0 )
5 0zd ( 𝜑 → 0 ∈ ℤ )
6 1 eftval ( 𝑘 ∈ ℕ0 → ( 𝐹𝑘 ) = ( ( 𝐴𝑘 ) / ( ! ‘ 𝑘 ) ) )
7 6 adantl ( ( 𝜑𝑘 ∈ ℕ0 ) → ( 𝐹𝑘 ) = ( ( 𝐴𝑘 ) / ( ! ‘ 𝑘 ) ) )
8 2 rpred ( 𝜑𝐴 ∈ ℝ )
9 reeftcl ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℝ )
10 8 9 sylan ( ( 𝜑𝑘 ∈ ℕ0 ) → ( ( 𝐴𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℝ )
11 7 10 eqeltrd ( ( 𝜑𝑘 ∈ ℕ0 ) → ( 𝐹𝑘 ) ∈ ℝ )
12 4 5 11 serfre ( 𝜑 → seq 0 ( + , 𝐹 ) : ℕ0 ⟶ ℝ )
13 12 3 ffvelrnd ( 𝜑 → ( seq 0 ( + , 𝐹 ) ‘ 𝑁 ) ∈ ℝ )
14 eqid ( ℤ ‘ ( 𝑁 + 1 ) ) = ( ℤ ‘ ( 𝑁 + 1 ) )
15 peano2nn0 ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ0 )
16 3 15 syl ( 𝜑 → ( 𝑁 + 1 ) ∈ ℕ0 )
17 eqidd ( ( 𝜑𝑘 ∈ ℕ0 ) → ( 𝐹𝑘 ) = ( 𝐹𝑘 ) )
18 nn0z ( 𝑘 ∈ ℕ0𝑘 ∈ ℤ )
19 rpexpcl ( ( 𝐴 ∈ ℝ+𝑘 ∈ ℤ ) → ( 𝐴𝑘 ) ∈ ℝ+ )
20 2 18 19 syl2an ( ( 𝜑𝑘 ∈ ℕ0 ) → ( 𝐴𝑘 ) ∈ ℝ+ )
21 faccl ( 𝑘 ∈ ℕ0 → ( ! ‘ 𝑘 ) ∈ ℕ )
22 21 adantl ( ( 𝜑𝑘 ∈ ℕ0 ) → ( ! ‘ 𝑘 ) ∈ ℕ )
23 22 nnrpd ( ( 𝜑𝑘 ∈ ℕ0 ) → ( ! ‘ 𝑘 ) ∈ ℝ+ )
24 20 23 rpdivcld ( ( 𝜑𝑘 ∈ ℕ0 ) → ( ( 𝐴𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℝ+ )
25 7 24 eqeltrd ( ( 𝜑𝑘 ∈ ℕ0 ) → ( 𝐹𝑘 ) ∈ ℝ+ )
26 8 recnd ( 𝜑𝐴 ∈ ℂ )
27 1 efcllem ( 𝐴 ∈ ℂ → seq 0 ( + , 𝐹 ) ∈ dom ⇝ )
28 26 27 syl ( 𝜑 → seq 0 ( + , 𝐹 ) ∈ dom ⇝ )
29 4 14 16 17 25 28 isumrpcl ( 𝜑 → Σ 𝑘 ∈ ( ℤ ‘ ( 𝑁 + 1 ) ) ( 𝐹𝑘 ) ∈ ℝ+ )
30 13 29 ltaddrpd ( 𝜑 → ( seq 0 ( + , 𝐹 ) ‘ 𝑁 ) < ( ( seq 0 ( + , 𝐹 ) ‘ 𝑁 ) + Σ 𝑘 ∈ ( ℤ ‘ ( 𝑁 + 1 ) ) ( 𝐹𝑘 ) ) )
31 1 efval2 ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) = Σ 𝑘 ∈ ℕ0 ( 𝐹𝑘 ) )
32 26 31 syl ( 𝜑 → ( exp ‘ 𝐴 ) = Σ 𝑘 ∈ ℕ0 ( 𝐹𝑘 ) )
33 11 recnd ( ( 𝜑𝑘 ∈ ℕ0 ) → ( 𝐹𝑘 ) ∈ ℂ )
34 4 14 16 17 33 28 isumsplit ( 𝜑 → Σ 𝑘 ∈ ℕ0 ( 𝐹𝑘 ) = ( Σ 𝑘 ∈ ( 0 ... ( ( 𝑁 + 1 ) − 1 ) ) ( 𝐹𝑘 ) + Σ 𝑘 ∈ ( ℤ ‘ ( 𝑁 + 1 ) ) ( 𝐹𝑘 ) ) )
35 3 nn0cnd ( 𝜑𝑁 ∈ ℂ )
36 ax-1cn 1 ∈ ℂ
37 pncan ( ( 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 )
38 35 36 37 sylancl ( 𝜑 → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 )
39 38 oveq2d ( 𝜑 → ( 0 ... ( ( 𝑁 + 1 ) − 1 ) ) = ( 0 ... 𝑁 ) )
40 39 sumeq1d ( 𝜑 → Σ 𝑘 ∈ ( 0 ... ( ( 𝑁 + 1 ) − 1 ) ) ( 𝐹𝑘 ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( 𝐹𝑘 ) )
41 eqidd ( ( 𝜑𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝐹𝑘 ) = ( 𝐹𝑘 ) )
42 3 4 eleqtrdi ( 𝜑𝑁 ∈ ( ℤ ‘ 0 ) )
43 elfznn0 ( 𝑘 ∈ ( 0 ... 𝑁 ) → 𝑘 ∈ ℕ0 )
44 43 33 sylan2 ( ( 𝜑𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝐹𝑘 ) ∈ ℂ )
45 41 42 44 fsumser ( 𝜑 → Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( 𝐹𝑘 ) = ( seq 0 ( + , 𝐹 ) ‘ 𝑁 ) )
46 40 45 eqtrd ( 𝜑 → Σ 𝑘 ∈ ( 0 ... ( ( 𝑁 + 1 ) − 1 ) ) ( 𝐹𝑘 ) = ( seq 0 ( + , 𝐹 ) ‘ 𝑁 ) )
47 46 oveq1d ( 𝜑 → ( Σ 𝑘 ∈ ( 0 ... ( ( 𝑁 + 1 ) − 1 ) ) ( 𝐹𝑘 ) + Σ 𝑘 ∈ ( ℤ ‘ ( 𝑁 + 1 ) ) ( 𝐹𝑘 ) ) = ( ( seq 0 ( + , 𝐹 ) ‘ 𝑁 ) + Σ 𝑘 ∈ ( ℤ ‘ ( 𝑁 + 1 ) ) ( 𝐹𝑘 ) ) )
48 32 34 47 3eqtrd ( 𝜑 → ( exp ‘ 𝐴 ) = ( ( seq 0 ( + , 𝐹 ) ‘ 𝑁 ) + Σ 𝑘 ∈ ( ℤ ‘ ( 𝑁 + 1 ) ) ( 𝐹𝑘 ) ) )
49 30 48 breqtrrd ( 𝜑 → ( seq 0 ( + , 𝐹 ) ‘ 𝑁 ) < ( exp ‘ 𝐴 ) )