Metamath Proof Explorer


Theorem elsetrecslem

Description: Lemma for elsetrecs . Any element of setrecs ( F ) is generated by some subset of setrecs ( F ) . This is much weaker than setrec2v . To see why this lemma also requires setrec1 , consider what would happen if we replaced B with { A } . The antecedent would still hold, but the consequent would fail in general. Consider dispensing with the deduction form. (Contributed by Emmett Weisz, 11-Jul-2021) (New usage is discouraged.)

Ref Expression
Hypothesis elsetrecs.1 𝐵 = setrecs ( 𝐹 )
Assertion elsetrecslem ( 𝐴𝐵 → ∃ 𝑥 ( 𝑥𝐵𝐴 ∈ ( 𝐹𝑥 ) ) )

Proof

Step Hyp Ref Expression
1 elsetrecs.1 𝐵 = setrecs ( 𝐹 )
2 ssdifsn ( 𝐵 ⊆ ( 𝐵 ∖ { 𝐴 } ) ↔ ( 𝐵𝐵 ∧ ¬ 𝐴𝐵 ) )
3 2 simprbi ( 𝐵 ⊆ ( 𝐵 ∖ { 𝐴 } ) → ¬ 𝐴𝐵 )
4 3 con2i ( 𝐴𝐵 → ¬ 𝐵 ⊆ ( 𝐵 ∖ { 𝐴 } ) )
5 sseq1 ( 𝑥 = 𝑎 → ( 𝑥𝐵𝑎𝐵 ) )
6 fveq2 ( 𝑥 = 𝑎 → ( 𝐹𝑥 ) = ( 𝐹𝑎 ) )
7 6 eleq2d ( 𝑥 = 𝑎 → ( 𝐴 ∈ ( 𝐹𝑥 ) ↔ 𝐴 ∈ ( 𝐹𝑎 ) ) )
8 5 7 anbi12d ( 𝑥 = 𝑎 → ( ( 𝑥𝐵𝐴 ∈ ( 𝐹𝑥 ) ) ↔ ( 𝑎𝐵𝐴 ∈ ( 𝐹𝑎 ) ) ) )
9 8 notbid ( 𝑥 = 𝑎 → ( ¬ ( 𝑥𝐵𝐴 ∈ ( 𝐹𝑥 ) ) ↔ ¬ ( 𝑎𝐵𝐴 ∈ ( 𝐹𝑎 ) ) ) )
10 9 spvv ( ∀ 𝑥 ¬ ( 𝑥𝐵𝐴 ∈ ( 𝐹𝑥 ) ) → ¬ ( 𝑎𝐵𝐴 ∈ ( 𝐹𝑎 ) ) )
11 imnan ( ( 𝑎𝐵 → ¬ 𝐴 ∈ ( 𝐹𝑎 ) ) ↔ ¬ ( 𝑎𝐵𝐴 ∈ ( 𝐹𝑎 ) ) )
12 idd ( 𝑎𝐵 → ( ¬ 𝐴 ∈ ( 𝐹𝑎 ) → ¬ 𝐴 ∈ ( 𝐹𝑎 ) ) )
13 vex 𝑎 ∈ V
14 13 a1i ( 𝑎𝐵𝑎 ∈ V )
15 id ( 𝑎𝐵𝑎𝐵 )
16 1 14 15 setrec1 ( 𝑎𝐵 → ( 𝐹𝑎 ) ⊆ 𝐵 )
17 12 16 jctild ( 𝑎𝐵 → ( ¬ 𝐴 ∈ ( 𝐹𝑎 ) → ( ( 𝐹𝑎 ) ⊆ 𝐵 ∧ ¬ 𝐴 ∈ ( 𝐹𝑎 ) ) ) )
18 17 a2i ( ( 𝑎𝐵 → ¬ 𝐴 ∈ ( 𝐹𝑎 ) ) → ( 𝑎𝐵 → ( ( 𝐹𝑎 ) ⊆ 𝐵 ∧ ¬ 𝐴 ∈ ( 𝐹𝑎 ) ) ) )
19 11 18 sylbir ( ¬ ( 𝑎𝐵𝐴 ∈ ( 𝐹𝑎 ) ) → ( 𝑎𝐵 → ( ( 𝐹𝑎 ) ⊆ 𝐵 ∧ ¬ 𝐴 ∈ ( 𝐹𝑎 ) ) ) )
20 19 adantrd ( ¬ ( 𝑎𝐵𝐴 ∈ ( 𝐹𝑎 ) ) → ( ( 𝑎𝐵 ∧ ¬ 𝐴𝑎 ) → ( ( 𝐹𝑎 ) ⊆ 𝐵 ∧ ¬ 𝐴 ∈ ( 𝐹𝑎 ) ) ) )
21 ssdifsn ( 𝑎 ⊆ ( 𝐵 ∖ { 𝐴 } ) ↔ ( 𝑎𝐵 ∧ ¬ 𝐴𝑎 ) )
22 ssdifsn ( ( 𝐹𝑎 ) ⊆ ( 𝐵 ∖ { 𝐴 } ) ↔ ( ( 𝐹𝑎 ) ⊆ 𝐵 ∧ ¬ 𝐴 ∈ ( 𝐹𝑎 ) ) )
23 20 21 22 3imtr4g ( ¬ ( 𝑎𝐵𝐴 ∈ ( 𝐹𝑎 ) ) → ( 𝑎 ⊆ ( 𝐵 ∖ { 𝐴 } ) → ( 𝐹𝑎 ) ⊆ ( 𝐵 ∖ { 𝐴 } ) ) )
24 10 23 syl ( ∀ 𝑥 ¬ ( 𝑥𝐵𝐴 ∈ ( 𝐹𝑥 ) ) → ( 𝑎 ⊆ ( 𝐵 ∖ { 𝐴 } ) → ( 𝐹𝑎 ) ⊆ ( 𝐵 ∖ { 𝐴 } ) ) )
25 24 alrimiv ( ∀ 𝑥 ¬ ( 𝑥𝐵𝐴 ∈ ( 𝐹𝑥 ) ) → ∀ 𝑎 ( 𝑎 ⊆ ( 𝐵 ∖ { 𝐴 } ) → ( 𝐹𝑎 ) ⊆ ( 𝐵 ∖ { 𝐴 } ) ) )
26 1 25 setrec2v ( ∀ 𝑥 ¬ ( 𝑥𝐵𝐴 ∈ ( 𝐹𝑥 ) ) → 𝐵 ⊆ ( 𝐵 ∖ { 𝐴 } ) )
27 4 26 nsyl ( 𝐴𝐵 → ¬ ∀ 𝑥 ¬ ( 𝑥𝐵𝐴 ∈ ( 𝐹𝑥 ) ) )
28 df-ex ( ∃ 𝑥 ( 𝑥𝐵𝐴 ∈ ( 𝐹𝑥 ) ) ↔ ¬ ∀ 𝑥 ¬ ( 𝑥𝐵𝐴 ∈ ( 𝐹𝑥 ) ) )
29 27 28 sylibr ( 𝐴𝐵 → ∃ 𝑥 ( 𝑥𝐵𝐴 ∈ ( 𝐹𝑥 ) ) )