Step |
Hyp |
Ref |
Expression |
1 |
|
elsetrecs.1 |
⊢ 𝐵 = setrecs ( 𝐹 ) |
2 |
|
ssdifsn |
⊢ ( 𝐵 ⊆ ( 𝐵 ∖ { 𝐴 } ) ↔ ( 𝐵 ⊆ 𝐵 ∧ ¬ 𝐴 ∈ 𝐵 ) ) |
3 |
2
|
simprbi |
⊢ ( 𝐵 ⊆ ( 𝐵 ∖ { 𝐴 } ) → ¬ 𝐴 ∈ 𝐵 ) |
4 |
3
|
con2i |
⊢ ( 𝐴 ∈ 𝐵 → ¬ 𝐵 ⊆ ( 𝐵 ∖ { 𝐴 } ) ) |
5 |
|
sseq1 |
⊢ ( 𝑥 = 𝑎 → ( 𝑥 ⊆ 𝐵 ↔ 𝑎 ⊆ 𝐵 ) ) |
6 |
|
fveq2 |
⊢ ( 𝑥 = 𝑎 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑎 ) ) |
7 |
6
|
eleq2d |
⊢ ( 𝑥 = 𝑎 → ( 𝐴 ∈ ( 𝐹 ‘ 𝑥 ) ↔ 𝐴 ∈ ( 𝐹 ‘ 𝑎 ) ) ) |
8 |
5 7
|
anbi12d |
⊢ ( 𝑥 = 𝑎 → ( ( 𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ ( 𝐹 ‘ 𝑥 ) ) ↔ ( 𝑎 ⊆ 𝐵 ∧ 𝐴 ∈ ( 𝐹 ‘ 𝑎 ) ) ) ) |
9 |
8
|
notbid |
⊢ ( 𝑥 = 𝑎 → ( ¬ ( 𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ ( 𝐹 ‘ 𝑥 ) ) ↔ ¬ ( 𝑎 ⊆ 𝐵 ∧ 𝐴 ∈ ( 𝐹 ‘ 𝑎 ) ) ) ) |
10 |
9
|
spvv |
⊢ ( ∀ 𝑥 ¬ ( 𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ ( 𝐹 ‘ 𝑥 ) ) → ¬ ( 𝑎 ⊆ 𝐵 ∧ 𝐴 ∈ ( 𝐹 ‘ 𝑎 ) ) ) |
11 |
|
imnan |
⊢ ( ( 𝑎 ⊆ 𝐵 → ¬ 𝐴 ∈ ( 𝐹 ‘ 𝑎 ) ) ↔ ¬ ( 𝑎 ⊆ 𝐵 ∧ 𝐴 ∈ ( 𝐹 ‘ 𝑎 ) ) ) |
12 |
|
idd |
⊢ ( 𝑎 ⊆ 𝐵 → ( ¬ 𝐴 ∈ ( 𝐹 ‘ 𝑎 ) → ¬ 𝐴 ∈ ( 𝐹 ‘ 𝑎 ) ) ) |
13 |
|
vex |
⊢ 𝑎 ∈ V |
14 |
13
|
a1i |
⊢ ( 𝑎 ⊆ 𝐵 → 𝑎 ∈ V ) |
15 |
|
id |
⊢ ( 𝑎 ⊆ 𝐵 → 𝑎 ⊆ 𝐵 ) |
16 |
1 14 15
|
setrec1 |
⊢ ( 𝑎 ⊆ 𝐵 → ( 𝐹 ‘ 𝑎 ) ⊆ 𝐵 ) |
17 |
12 16
|
jctild |
⊢ ( 𝑎 ⊆ 𝐵 → ( ¬ 𝐴 ∈ ( 𝐹 ‘ 𝑎 ) → ( ( 𝐹 ‘ 𝑎 ) ⊆ 𝐵 ∧ ¬ 𝐴 ∈ ( 𝐹 ‘ 𝑎 ) ) ) ) |
18 |
17
|
a2i |
⊢ ( ( 𝑎 ⊆ 𝐵 → ¬ 𝐴 ∈ ( 𝐹 ‘ 𝑎 ) ) → ( 𝑎 ⊆ 𝐵 → ( ( 𝐹 ‘ 𝑎 ) ⊆ 𝐵 ∧ ¬ 𝐴 ∈ ( 𝐹 ‘ 𝑎 ) ) ) ) |
19 |
11 18
|
sylbir |
⊢ ( ¬ ( 𝑎 ⊆ 𝐵 ∧ 𝐴 ∈ ( 𝐹 ‘ 𝑎 ) ) → ( 𝑎 ⊆ 𝐵 → ( ( 𝐹 ‘ 𝑎 ) ⊆ 𝐵 ∧ ¬ 𝐴 ∈ ( 𝐹 ‘ 𝑎 ) ) ) ) |
20 |
19
|
adantrd |
⊢ ( ¬ ( 𝑎 ⊆ 𝐵 ∧ 𝐴 ∈ ( 𝐹 ‘ 𝑎 ) ) → ( ( 𝑎 ⊆ 𝐵 ∧ ¬ 𝐴 ∈ 𝑎 ) → ( ( 𝐹 ‘ 𝑎 ) ⊆ 𝐵 ∧ ¬ 𝐴 ∈ ( 𝐹 ‘ 𝑎 ) ) ) ) |
21 |
|
ssdifsn |
⊢ ( 𝑎 ⊆ ( 𝐵 ∖ { 𝐴 } ) ↔ ( 𝑎 ⊆ 𝐵 ∧ ¬ 𝐴 ∈ 𝑎 ) ) |
22 |
|
ssdifsn |
⊢ ( ( 𝐹 ‘ 𝑎 ) ⊆ ( 𝐵 ∖ { 𝐴 } ) ↔ ( ( 𝐹 ‘ 𝑎 ) ⊆ 𝐵 ∧ ¬ 𝐴 ∈ ( 𝐹 ‘ 𝑎 ) ) ) |
23 |
20 21 22
|
3imtr4g |
⊢ ( ¬ ( 𝑎 ⊆ 𝐵 ∧ 𝐴 ∈ ( 𝐹 ‘ 𝑎 ) ) → ( 𝑎 ⊆ ( 𝐵 ∖ { 𝐴 } ) → ( 𝐹 ‘ 𝑎 ) ⊆ ( 𝐵 ∖ { 𝐴 } ) ) ) |
24 |
10 23
|
syl |
⊢ ( ∀ 𝑥 ¬ ( 𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ ( 𝐹 ‘ 𝑥 ) ) → ( 𝑎 ⊆ ( 𝐵 ∖ { 𝐴 } ) → ( 𝐹 ‘ 𝑎 ) ⊆ ( 𝐵 ∖ { 𝐴 } ) ) ) |
25 |
24
|
alrimiv |
⊢ ( ∀ 𝑥 ¬ ( 𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ ( 𝐹 ‘ 𝑥 ) ) → ∀ 𝑎 ( 𝑎 ⊆ ( 𝐵 ∖ { 𝐴 } ) → ( 𝐹 ‘ 𝑎 ) ⊆ ( 𝐵 ∖ { 𝐴 } ) ) ) |
26 |
1 25
|
setrec2v |
⊢ ( ∀ 𝑥 ¬ ( 𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ ( 𝐹 ‘ 𝑥 ) ) → 𝐵 ⊆ ( 𝐵 ∖ { 𝐴 } ) ) |
27 |
4 26
|
nsyl |
⊢ ( 𝐴 ∈ 𝐵 → ¬ ∀ 𝑥 ¬ ( 𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ ( 𝐹 ‘ 𝑥 ) ) ) |
28 |
|
df-ex |
⊢ ( ∃ 𝑥 ( 𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ ( 𝐹 ‘ 𝑥 ) ) ↔ ¬ ∀ 𝑥 ¬ ( 𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ ( 𝐹 ‘ 𝑥 ) ) ) |
29 |
27 28
|
sylibr |
⊢ ( 𝐴 ∈ 𝐵 → ∃ 𝑥 ( 𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ ( 𝐹 ‘ 𝑥 ) ) ) |