Metamath Proof Explorer


Theorem elsetrecslem

Description: Lemma for elsetrecs . Any element of setrecs ( F ) is generated by some subset of setrecs ( F ) . This is much weaker than setrec2v . To see why this lemma also requires setrec1 , consider what would happen if we replaced B with { A } . The antecedent would still hold, but the consequent would fail in general. Consider dispensing with the deduction form. (Contributed by Emmett Weisz, 11-Jul-2021) (New usage is discouraged.)

Ref Expression
Hypothesis elsetrecs.1 B = setrecs F
Assertion elsetrecslem A B x x B A F x

Proof

Step Hyp Ref Expression
1 elsetrecs.1 B = setrecs F
2 ssdifsn B B A B B ¬ A B
3 2 simprbi B B A ¬ A B
4 3 con2i A B ¬ B B A
5 sseq1 x = a x B a B
6 fveq2 x = a F x = F a
7 6 eleq2d x = a A F x A F a
8 5 7 anbi12d x = a x B A F x a B A F a
9 8 notbid x = a ¬ x B A F x ¬ a B A F a
10 9 spvv x ¬ x B A F x ¬ a B A F a
11 imnan a B ¬ A F a ¬ a B A F a
12 idd a B ¬ A F a ¬ A F a
13 vex a V
14 13 a1i a B a V
15 id a B a B
16 1 14 15 setrec1 a B F a B
17 12 16 jctild a B ¬ A F a F a B ¬ A F a
18 17 a2i a B ¬ A F a a B F a B ¬ A F a
19 11 18 sylbir ¬ a B A F a a B F a B ¬ A F a
20 19 adantrd ¬ a B A F a a B ¬ A a F a B ¬ A F a
21 ssdifsn a B A a B ¬ A a
22 ssdifsn F a B A F a B ¬ A F a
23 20 21 22 3imtr4g ¬ a B A F a a B A F a B A
24 10 23 syl x ¬ x B A F x a B A F a B A
25 24 alrimiv x ¬ x B A F x a a B A F a B A
26 1 25 setrec2v x ¬ x B A F x B B A
27 4 26 nsyl A B ¬ x ¬ x B A F x
28 df-ex x x B A F x ¬ x ¬ x B A F x
29 27 28 sylibr A B x x B A F x