Step |
Hyp |
Ref |
Expression |
1 |
|
elsetrecs.1 |
|- B = setrecs ( F ) |
2 |
|
ssdifsn |
|- ( B C_ ( B \ { A } ) <-> ( B C_ B /\ -. A e. B ) ) |
3 |
2
|
simprbi |
|- ( B C_ ( B \ { A } ) -> -. A e. B ) |
4 |
3
|
con2i |
|- ( A e. B -> -. B C_ ( B \ { A } ) ) |
5 |
|
sseq1 |
|- ( x = a -> ( x C_ B <-> a C_ B ) ) |
6 |
|
fveq2 |
|- ( x = a -> ( F ` x ) = ( F ` a ) ) |
7 |
6
|
eleq2d |
|- ( x = a -> ( A e. ( F ` x ) <-> A e. ( F ` a ) ) ) |
8 |
5 7
|
anbi12d |
|- ( x = a -> ( ( x C_ B /\ A e. ( F ` x ) ) <-> ( a C_ B /\ A e. ( F ` a ) ) ) ) |
9 |
8
|
notbid |
|- ( x = a -> ( -. ( x C_ B /\ A e. ( F ` x ) ) <-> -. ( a C_ B /\ A e. ( F ` a ) ) ) ) |
10 |
9
|
spvv |
|- ( A. x -. ( x C_ B /\ A e. ( F ` x ) ) -> -. ( a C_ B /\ A e. ( F ` a ) ) ) |
11 |
|
imnan |
|- ( ( a C_ B -> -. A e. ( F ` a ) ) <-> -. ( a C_ B /\ A e. ( F ` a ) ) ) |
12 |
|
idd |
|- ( a C_ B -> ( -. A e. ( F ` a ) -> -. A e. ( F ` a ) ) ) |
13 |
|
vex |
|- a e. _V |
14 |
13
|
a1i |
|- ( a C_ B -> a e. _V ) |
15 |
|
id |
|- ( a C_ B -> a C_ B ) |
16 |
1 14 15
|
setrec1 |
|- ( a C_ B -> ( F ` a ) C_ B ) |
17 |
12 16
|
jctild |
|- ( a C_ B -> ( -. A e. ( F ` a ) -> ( ( F ` a ) C_ B /\ -. A e. ( F ` a ) ) ) ) |
18 |
17
|
a2i |
|- ( ( a C_ B -> -. A e. ( F ` a ) ) -> ( a C_ B -> ( ( F ` a ) C_ B /\ -. A e. ( F ` a ) ) ) ) |
19 |
11 18
|
sylbir |
|- ( -. ( a C_ B /\ A e. ( F ` a ) ) -> ( a C_ B -> ( ( F ` a ) C_ B /\ -. A e. ( F ` a ) ) ) ) |
20 |
19
|
adantrd |
|- ( -. ( a C_ B /\ A e. ( F ` a ) ) -> ( ( a C_ B /\ -. A e. a ) -> ( ( F ` a ) C_ B /\ -. A e. ( F ` a ) ) ) ) |
21 |
|
ssdifsn |
|- ( a C_ ( B \ { A } ) <-> ( a C_ B /\ -. A e. a ) ) |
22 |
|
ssdifsn |
|- ( ( F ` a ) C_ ( B \ { A } ) <-> ( ( F ` a ) C_ B /\ -. A e. ( F ` a ) ) ) |
23 |
20 21 22
|
3imtr4g |
|- ( -. ( a C_ B /\ A e. ( F ` a ) ) -> ( a C_ ( B \ { A } ) -> ( F ` a ) C_ ( B \ { A } ) ) ) |
24 |
10 23
|
syl |
|- ( A. x -. ( x C_ B /\ A e. ( F ` x ) ) -> ( a C_ ( B \ { A } ) -> ( F ` a ) C_ ( B \ { A } ) ) ) |
25 |
24
|
alrimiv |
|- ( A. x -. ( x C_ B /\ A e. ( F ` x ) ) -> A. a ( a C_ ( B \ { A } ) -> ( F ` a ) C_ ( B \ { A } ) ) ) |
26 |
1 25
|
setrec2v |
|- ( A. x -. ( x C_ B /\ A e. ( F ` x ) ) -> B C_ ( B \ { A } ) ) |
27 |
4 26
|
nsyl |
|- ( A e. B -> -. A. x -. ( x C_ B /\ A e. ( F ` x ) ) ) |
28 |
|
df-ex |
|- ( E. x ( x C_ B /\ A e. ( F ` x ) ) <-> -. A. x -. ( x C_ B /\ A e. ( F ` x ) ) ) |
29 |
27 28
|
sylibr |
|- ( A e. B -> E. x ( x C_ B /\ A e. ( F ` x ) ) ) |