| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqneqall |
⊢ ( 𝑎 = ∅ → ( 𝑎 ≠ ∅ → ( [⊊] Or 𝑎 → ∪ 𝑎 ∈ 𝑎 ) ) ) |
| 2 |
|
tru |
⊢ ⊤ |
| 3 |
2
|
a1i |
⊢ ( 𝑎 = ∅ → ⊤ ) |
| 4 |
1 3
|
2thd |
⊢ ( 𝑎 = ∅ → ( ( 𝑎 ≠ ∅ → ( [⊊] Or 𝑎 → ∪ 𝑎 ∈ 𝑎 ) ) ↔ ⊤ ) ) |
| 5 |
|
neeq1 |
⊢ ( 𝑎 = 𝑏 → ( 𝑎 ≠ ∅ ↔ 𝑏 ≠ ∅ ) ) |
| 6 |
|
soeq2 |
⊢ ( 𝑎 = 𝑏 → ( [⊊] Or 𝑎 ↔ [⊊] Or 𝑏 ) ) |
| 7 |
|
unieq |
⊢ ( 𝑎 = 𝑏 → ∪ 𝑎 = ∪ 𝑏 ) |
| 8 |
|
id |
⊢ ( 𝑎 = 𝑏 → 𝑎 = 𝑏 ) |
| 9 |
7 8
|
eleq12d |
⊢ ( 𝑎 = 𝑏 → ( ∪ 𝑎 ∈ 𝑎 ↔ ∪ 𝑏 ∈ 𝑏 ) ) |
| 10 |
6 9
|
imbi12d |
⊢ ( 𝑎 = 𝑏 → ( ( [⊊] Or 𝑎 → ∪ 𝑎 ∈ 𝑎 ) ↔ ( [⊊] Or 𝑏 → ∪ 𝑏 ∈ 𝑏 ) ) ) |
| 11 |
5 10
|
imbi12d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝑎 ≠ ∅ → ( [⊊] Or 𝑎 → ∪ 𝑎 ∈ 𝑎 ) ) ↔ ( 𝑏 ≠ ∅ → ( [⊊] Or 𝑏 → ∪ 𝑏 ∈ 𝑏 ) ) ) ) |
| 12 |
|
neeq1 |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( 𝑎 ≠ ∅ ↔ ( 𝑏 ∪ { 𝑐 } ) ≠ ∅ ) ) |
| 13 |
|
soeq2 |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( [⊊] Or 𝑎 ↔ [⊊] Or ( 𝑏 ∪ { 𝑐 } ) ) ) |
| 14 |
|
unieq |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ∪ 𝑎 = ∪ ( 𝑏 ∪ { 𝑐 } ) ) |
| 15 |
|
id |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → 𝑎 = ( 𝑏 ∪ { 𝑐 } ) ) |
| 16 |
14 15
|
eleq12d |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ∪ 𝑎 ∈ 𝑎 ↔ ∪ ( 𝑏 ∪ { 𝑐 } ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) ) |
| 17 |
13 16
|
imbi12d |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ( [⊊] Or 𝑎 → ∪ 𝑎 ∈ 𝑎 ) ↔ ( [⊊] Or ( 𝑏 ∪ { 𝑐 } ) → ∪ ( 𝑏 ∪ { 𝑐 } ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) ) ) |
| 18 |
12 17
|
imbi12d |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ( 𝑎 ≠ ∅ → ( [⊊] Or 𝑎 → ∪ 𝑎 ∈ 𝑎 ) ) ↔ ( ( 𝑏 ∪ { 𝑐 } ) ≠ ∅ → ( [⊊] Or ( 𝑏 ∪ { 𝑐 } ) → ∪ ( 𝑏 ∪ { 𝑐 } ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) ) ) ) |
| 19 |
|
neeq1 |
⊢ ( 𝑎 = 𝐴 → ( 𝑎 ≠ ∅ ↔ 𝐴 ≠ ∅ ) ) |
| 20 |
|
soeq2 |
⊢ ( 𝑎 = 𝐴 → ( [⊊] Or 𝑎 ↔ [⊊] Or 𝐴 ) ) |
| 21 |
|
unieq |
⊢ ( 𝑎 = 𝐴 → ∪ 𝑎 = ∪ 𝐴 ) |
| 22 |
|
id |
⊢ ( 𝑎 = 𝐴 → 𝑎 = 𝐴 ) |
| 23 |
21 22
|
eleq12d |
⊢ ( 𝑎 = 𝐴 → ( ∪ 𝑎 ∈ 𝑎 ↔ ∪ 𝐴 ∈ 𝐴 ) ) |
| 24 |
20 23
|
imbi12d |
⊢ ( 𝑎 = 𝐴 → ( ( [⊊] Or 𝑎 → ∪ 𝑎 ∈ 𝑎 ) ↔ ( [⊊] Or 𝐴 → ∪ 𝐴 ∈ 𝐴 ) ) ) |
| 25 |
19 24
|
imbi12d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝑎 ≠ ∅ → ( [⊊] Or 𝑎 → ∪ 𝑎 ∈ 𝑎 ) ) ↔ ( 𝐴 ≠ ∅ → ( [⊊] Or 𝐴 → ∪ 𝐴 ∈ 𝐴 ) ) ) ) |
| 26 |
|
unisnv |
⊢ ∪ { 𝑐 } = 𝑐 |
| 27 |
|
vsnid |
⊢ 𝑐 ∈ { 𝑐 } |
| 28 |
26 27
|
eqeltri |
⊢ ∪ { 𝑐 } ∈ { 𝑐 } |
| 29 |
|
uneq1 |
⊢ ( 𝑏 = ∅ → ( 𝑏 ∪ { 𝑐 } ) = ( ∅ ∪ { 𝑐 } ) ) |
| 30 |
|
uncom |
⊢ ( ∅ ∪ { 𝑐 } ) = ( { 𝑐 } ∪ ∅ ) |
| 31 |
|
un0 |
⊢ ( { 𝑐 } ∪ ∅ ) = { 𝑐 } |
| 32 |
30 31
|
eqtri |
⊢ ( ∅ ∪ { 𝑐 } ) = { 𝑐 } |
| 33 |
29 32
|
eqtrdi |
⊢ ( 𝑏 = ∅ → ( 𝑏 ∪ { 𝑐 } ) = { 𝑐 } ) |
| 34 |
33
|
unieqd |
⊢ ( 𝑏 = ∅ → ∪ ( 𝑏 ∪ { 𝑐 } ) = ∪ { 𝑐 } ) |
| 35 |
34 33
|
eleq12d |
⊢ ( 𝑏 = ∅ → ( ∪ ( 𝑏 ∪ { 𝑐 } ) ∈ ( 𝑏 ∪ { 𝑐 } ) ↔ ∪ { 𝑐 } ∈ { 𝑐 } ) ) |
| 36 |
28 35
|
mpbiri |
⊢ ( 𝑏 = ∅ → ∪ ( 𝑏 ∪ { 𝑐 } ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) |
| 37 |
36
|
a1d |
⊢ ( 𝑏 = ∅ → ( ( 𝑏 ≠ ∅ → ( [⊊] Or 𝑏 → ∪ 𝑏 ∈ 𝑏 ) ) → ∪ ( 𝑏 ∪ { 𝑐 } ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) ) |
| 38 |
37
|
adantl |
⊢ ( ( ( 𝑏 ∈ Fin ∧ [⊊] Or ( 𝑏 ∪ { 𝑐 } ) ∧ ( 𝑏 ∪ { 𝑐 } ) ≠ ∅ ) ∧ 𝑏 = ∅ ) → ( ( 𝑏 ≠ ∅ → ( [⊊] Or 𝑏 → ∪ 𝑏 ∈ 𝑏 ) ) → ∪ ( 𝑏 ∪ { 𝑐 } ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) ) |
| 39 |
|
simpr |
⊢ ( ( ( 𝑏 ∈ Fin ∧ [⊊] Or ( 𝑏 ∪ { 𝑐 } ) ∧ ( 𝑏 ∪ { 𝑐 } ) ≠ ∅ ) ∧ 𝑏 ≠ ∅ ) → 𝑏 ≠ ∅ ) |
| 40 |
|
ssun1 |
⊢ 𝑏 ⊆ ( 𝑏 ∪ { 𝑐 } ) |
| 41 |
|
simpl2 |
⊢ ( ( ( 𝑏 ∈ Fin ∧ [⊊] Or ( 𝑏 ∪ { 𝑐 } ) ∧ ( 𝑏 ∪ { 𝑐 } ) ≠ ∅ ) ∧ 𝑏 ≠ ∅ ) → [⊊] Or ( 𝑏 ∪ { 𝑐 } ) ) |
| 42 |
|
soss |
⊢ ( 𝑏 ⊆ ( 𝑏 ∪ { 𝑐 } ) → ( [⊊] Or ( 𝑏 ∪ { 𝑐 } ) → [⊊] Or 𝑏 ) ) |
| 43 |
40 41 42
|
mpsyl |
⊢ ( ( ( 𝑏 ∈ Fin ∧ [⊊] Or ( 𝑏 ∪ { 𝑐 } ) ∧ ( 𝑏 ∪ { 𝑐 } ) ≠ ∅ ) ∧ 𝑏 ≠ ∅ ) → [⊊] Or 𝑏 ) |
| 44 |
|
uniun |
⊢ ∪ ( 𝑏 ∪ { 𝑐 } ) = ( ∪ 𝑏 ∪ ∪ { 𝑐 } ) |
| 45 |
26
|
uneq2i |
⊢ ( ∪ 𝑏 ∪ ∪ { 𝑐 } ) = ( ∪ 𝑏 ∪ 𝑐 ) |
| 46 |
44 45
|
eqtri |
⊢ ∪ ( 𝑏 ∪ { 𝑐 } ) = ( ∪ 𝑏 ∪ 𝑐 ) |
| 47 |
|
simprr |
⊢ ( ( ( 𝑏 ∈ Fin ∧ [⊊] Or ( 𝑏 ∪ { 𝑐 } ) ∧ ( 𝑏 ∪ { 𝑐 } ) ≠ ∅ ) ∧ ( 𝑏 ≠ ∅ ∧ ∪ 𝑏 ∈ 𝑏 ) ) → ∪ 𝑏 ∈ 𝑏 ) |
| 48 |
|
simpl2 |
⊢ ( ( ( 𝑏 ∈ Fin ∧ [⊊] Or ( 𝑏 ∪ { 𝑐 } ) ∧ ( 𝑏 ∪ { 𝑐 } ) ≠ ∅ ) ∧ ( 𝑏 ≠ ∅ ∧ ∪ 𝑏 ∈ 𝑏 ) ) → [⊊] Or ( 𝑏 ∪ { 𝑐 } ) ) |
| 49 |
|
elun1 |
⊢ ( ∪ 𝑏 ∈ 𝑏 → ∪ 𝑏 ∈ ( 𝑏 ∪ { 𝑐 } ) ) |
| 50 |
49
|
ad2antll |
⊢ ( ( ( 𝑏 ∈ Fin ∧ [⊊] Or ( 𝑏 ∪ { 𝑐 } ) ∧ ( 𝑏 ∪ { 𝑐 } ) ≠ ∅ ) ∧ ( 𝑏 ≠ ∅ ∧ ∪ 𝑏 ∈ 𝑏 ) ) → ∪ 𝑏 ∈ ( 𝑏 ∪ { 𝑐 } ) ) |
| 51 |
|
ssun2 |
⊢ { 𝑐 } ⊆ ( 𝑏 ∪ { 𝑐 } ) |
| 52 |
51 27
|
sselii |
⊢ 𝑐 ∈ ( 𝑏 ∪ { 𝑐 } ) |
| 53 |
52
|
a1i |
⊢ ( ( ( 𝑏 ∈ Fin ∧ [⊊] Or ( 𝑏 ∪ { 𝑐 } ) ∧ ( 𝑏 ∪ { 𝑐 } ) ≠ ∅ ) ∧ ( 𝑏 ≠ ∅ ∧ ∪ 𝑏 ∈ 𝑏 ) ) → 𝑐 ∈ ( 𝑏 ∪ { 𝑐 } ) ) |
| 54 |
|
sorpssi |
⊢ ( ( [⊊] Or ( 𝑏 ∪ { 𝑐 } ) ∧ ( ∪ 𝑏 ∈ ( 𝑏 ∪ { 𝑐 } ) ∧ 𝑐 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ) → ( ∪ 𝑏 ⊆ 𝑐 ∨ 𝑐 ⊆ ∪ 𝑏 ) ) |
| 55 |
48 50 53 54
|
syl12anc |
⊢ ( ( ( 𝑏 ∈ Fin ∧ [⊊] Or ( 𝑏 ∪ { 𝑐 } ) ∧ ( 𝑏 ∪ { 𝑐 } ) ≠ ∅ ) ∧ ( 𝑏 ≠ ∅ ∧ ∪ 𝑏 ∈ 𝑏 ) ) → ( ∪ 𝑏 ⊆ 𝑐 ∨ 𝑐 ⊆ ∪ 𝑏 ) ) |
| 56 |
|
ssequn1 |
⊢ ( ∪ 𝑏 ⊆ 𝑐 ↔ ( ∪ 𝑏 ∪ 𝑐 ) = 𝑐 ) |
| 57 |
52
|
a1i |
⊢ ( ∪ 𝑏 ∈ 𝑏 → 𝑐 ∈ ( 𝑏 ∪ { 𝑐 } ) ) |
| 58 |
|
eleq1 |
⊢ ( ( ∪ 𝑏 ∪ 𝑐 ) = 𝑐 → ( ( ∪ 𝑏 ∪ 𝑐 ) ∈ ( 𝑏 ∪ { 𝑐 } ) ↔ 𝑐 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ) |
| 59 |
57 58
|
imbitrrid |
⊢ ( ( ∪ 𝑏 ∪ 𝑐 ) = 𝑐 → ( ∪ 𝑏 ∈ 𝑏 → ( ∪ 𝑏 ∪ 𝑐 ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) ) |
| 60 |
56 59
|
sylbi |
⊢ ( ∪ 𝑏 ⊆ 𝑐 → ( ∪ 𝑏 ∈ 𝑏 → ( ∪ 𝑏 ∪ 𝑐 ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) ) |
| 61 |
60
|
impcom |
⊢ ( ( ∪ 𝑏 ∈ 𝑏 ∧ ∪ 𝑏 ⊆ 𝑐 ) → ( ∪ 𝑏 ∪ 𝑐 ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) |
| 62 |
|
uncom |
⊢ ( ∪ 𝑏 ∪ 𝑐 ) = ( 𝑐 ∪ ∪ 𝑏 ) |
| 63 |
|
ssequn1 |
⊢ ( 𝑐 ⊆ ∪ 𝑏 ↔ ( 𝑐 ∪ ∪ 𝑏 ) = ∪ 𝑏 ) |
| 64 |
|
eleq1 |
⊢ ( ( 𝑐 ∪ ∪ 𝑏 ) = ∪ 𝑏 → ( ( 𝑐 ∪ ∪ 𝑏 ) ∈ ( 𝑏 ∪ { 𝑐 } ) ↔ ∪ 𝑏 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ) |
| 65 |
49 64
|
imbitrrid |
⊢ ( ( 𝑐 ∪ ∪ 𝑏 ) = ∪ 𝑏 → ( ∪ 𝑏 ∈ 𝑏 → ( 𝑐 ∪ ∪ 𝑏 ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) ) |
| 66 |
63 65
|
sylbi |
⊢ ( 𝑐 ⊆ ∪ 𝑏 → ( ∪ 𝑏 ∈ 𝑏 → ( 𝑐 ∪ ∪ 𝑏 ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) ) |
| 67 |
66
|
impcom |
⊢ ( ( ∪ 𝑏 ∈ 𝑏 ∧ 𝑐 ⊆ ∪ 𝑏 ) → ( 𝑐 ∪ ∪ 𝑏 ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) |
| 68 |
62 67
|
eqeltrid |
⊢ ( ( ∪ 𝑏 ∈ 𝑏 ∧ 𝑐 ⊆ ∪ 𝑏 ) → ( ∪ 𝑏 ∪ 𝑐 ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) |
| 69 |
61 68
|
jaodan |
⊢ ( ( ∪ 𝑏 ∈ 𝑏 ∧ ( ∪ 𝑏 ⊆ 𝑐 ∨ 𝑐 ⊆ ∪ 𝑏 ) ) → ( ∪ 𝑏 ∪ 𝑐 ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) |
| 70 |
47 55 69
|
syl2anc |
⊢ ( ( ( 𝑏 ∈ Fin ∧ [⊊] Or ( 𝑏 ∪ { 𝑐 } ) ∧ ( 𝑏 ∪ { 𝑐 } ) ≠ ∅ ) ∧ ( 𝑏 ≠ ∅ ∧ ∪ 𝑏 ∈ 𝑏 ) ) → ( ∪ 𝑏 ∪ 𝑐 ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) |
| 71 |
46 70
|
eqeltrid |
⊢ ( ( ( 𝑏 ∈ Fin ∧ [⊊] Or ( 𝑏 ∪ { 𝑐 } ) ∧ ( 𝑏 ∪ { 𝑐 } ) ≠ ∅ ) ∧ ( 𝑏 ≠ ∅ ∧ ∪ 𝑏 ∈ 𝑏 ) ) → ∪ ( 𝑏 ∪ { 𝑐 } ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) |
| 72 |
71
|
expr |
⊢ ( ( ( 𝑏 ∈ Fin ∧ [⊊] Or ( 𝑏 ∪ { 𝑐 } ) ∧ ( 𝑏 ∪ { 𝑐 } ) ≠ ∅ ) ∧ 𝑏 ≠ ∅ ) → ( ∪ 𝑏 ∈ 𝑏 → ∪ ( 𝑏 ∪ { 𝑐 } ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) ) |
| 73 |
43 72
|
embantd |
⊢ ( ( ( 𝑏 ∈ Fin ∧ [⊊] Or ( 𝑏 ∪ { 𝑐 } ) ∧ ( 𝑏 ∪ { 𝑐 } ) ≠ ∅ ) ∧ 𝑏 ≠ ∅ ) → ( ( [⊊] Or 𝑏 → ∪ 𝑏 ∈ 𝑏 ) → ∪ ( 𝑏 ∪ { 𝑐 } ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) ) |
| 74 |
39 73
|
embantd |
⊢ ( ( ( 𝑏 ∈ Fin ∧ [⊊] Or ( 𝑏 ∪ { 𝑐 } ) ∧ ( 𝑏 ∪ { 𝑐 } ) ≠ ∅ ) ∧ 𝑏 ≠ ∅ ) → ( ( 𝑏 ≠ ∅ → ( [⊊] Or 𝑏 → ∪ 𝑏 ∈ 𝑏 ) ) → ∪ ( 𝑏 ∪ { 𝑐 } ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) ) |
| 75 |
38 74
|
pm2.61dane |
⊢ ( ( 𝑏 ∈ Fin ∧ [⊊] Or ( 𝑏 ∪ { 𝑐 } ) ∧ ( 𝑏 ∪ { 𝑐 } ) ≠ ∅ ) → ( ( 𝑏 ≠ ∅ → ( [⊊] Or 𝑏 → ∪ 𝑏 ∈ 𝑏 ) ) → ∪ ( 𝑏 ∪ { 𝑐 } ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) ) |
| 76 |
75
|
3exp |
⊢ ( 𝑏 ∈ Fin → ( [⊊] Or ( 𝑏 ∪ { 𝑐 } ) → ( ( 𝑏 ∪ { 𝑐 } ) ≠ ∅ → ( ( 𝑏 ≠ ∅ → ( [⊊] Or 𝑏 → ∪ 𝑏 ∈ 𝑏 ) ) → ∪ ( 𝑏 ∪ { 𝑐 } ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) ) ) ) |
| 77 |
76
|
com24 |
⊢ ( 𝑏 ∈ Fin → ( ( 𝑏 ≠ ∅ → ( [⊊] Or 𝑏 → ∪ 𝑏 ∈ 𝑏 ) ) → ( ( 𝑏 ∪ { 𝑐 } ) ≠ ∅ → ( [⊊] Or ( 𝑏 ∪ { 𝑐 } ) → ∪ ( 𝑏 ∪ { 𝑐 } ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) ) ) ) |
| 78 |
4 11 18 25 2 77
|
findcard2 |
⊢ ( 𝐴 ∈ Fin → ( 𝐴 ≠ ∅ → ( [⊊] Or 𝐴 → ∪ 𝐴 ∈ 𝐴 ) ) ) |
| 79 |
78
|
3imp21 |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ∧ [⊊] Or 𝐴 ) → ∪ 𝐴 ∈ 𝐴 ) |