Metamath Proof Explorer


Theorem fin23lem41

Description: Lemma for fin23 . A set which satisfies the descending sequence condition must be III-finite. (Contributed by Stefan O'Rear, 2-Nov-2014)

Ref Expression
Hypothesis fin23lem40.f 𝐹 = { 𝑔 ∣ ∀ 𝑎 ∈ ( 𝒫 𝑔m ω ) ( ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎𝑥 ) → ran 𝑎 ∈ ran 𝑎 ) }
Assertion fin23lem41 ( 𝐴𝐹𝐴 ∈ FinIII )

Proof

Step Hyp Ref Expression
1 fin23lem40.f 𝐹 = { 𝑔 ∣ ∀ 𝑎 ∈ ( 𝒫 𝑔m ω ) ( ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎𝑥 ) → ran 𝑎 ∈ ran 𝑎 ) }
2 brdomi ( ω ≼ 𝒫 𝐴 → ∃ 𝑏 𝑏 : ω –1-1→ 𝒫 𝐴 )
3 1 fin23lem33 ( 𝐴𝐹 → ∃ 𝑐𝑑 ( ( 𝑑 : ω –1-1→ V ∧ ran 𝑑𝐴 ) → ( ( 𝑐𝑑 ) : ω –1-1→ V ∧ ran ( 𝑐𝑑 ) ⊊ ran 𝑑 ) ) )
4 3 adantl ( ( 𝑏 : ω –1-1→ 𝒫 𝐴𝐴𝐹 ) → ∃ 𝑐𝑑 ( ( 𝑑 : ω –1-1→ V ∧ ran 𝑑𝐴 ) → ( ( 𝑐𝑑 ) : ω –1-1→ V ∧ ran ( 𝑐𝑑 ) ⊊ ran 𝑑 ) ) )
5 ssv 𝒫 𝐴 ⊆ V
6 f1ss ( ( 𝑏 : ω –1-1→ 𝒫 𝐴 ∧ 𝒫 𝐴 ⊆ V ) → 𝑏 : ω –1-1→ V )
7 5 6 mpan2 ( 𝑏 : ω –1-1→ 𝒫 𝐴𝑏 : ω –1-1→ V )
8 7 ad2antrr ( ( ( 𝑏 : ω –1-1→ 𝒫 𝐴𝐴𝐹 ) ∧ ∀ 𝑑 ( ( 𝑑 : ω –1-1→ V ∧ ran 𝑑𝐴 ) → ( ( 𝑐𝑑 ) : ω –1-1→ V ∧ ran ( 𝑐𝑑 ) ⊊ ran 𝑑 ) ) ) → 𝑏 : ω –1-1→ V )
9 f1f ( 𝑏 : ω –1-1→ 𝒫 𝐴𝑏 : ω ⟶ 𝒫 𝐴 )
10 frn ( 𝑏 : ω ⟶ 𝒫 𝐴 → ran 𝑏 ⊆ 𝒫 𝐴 )
11 uniss ( ran 𝑏 ⊆ 𝒫 𝐴 ran 𝑏 𝒫 𝐴 )
12 9 10 11 3syl ( 𝑏 : ω –1-1→ 𝒫 𝐴 ran 𝑏 𝒫 𝐴 )
13 unipw 𝒫 𝐴 = 𝐴
14 12 13 sseqtrdi ( 𝑏 : ω –1-1→ 𝒫 𝐴 ran 𝑏𝐴 )
15 14 ad2antrr ( ( ( 𝑏 : ω –1-1→ 𝒫 𝐴𝐴𝐹 ) ∧ ∀ 𝑑 ( ( 𝑑 : ω –1-1→ V ∧ ran 𝑑𝐴 ) → ( ( 𝑐𝑑 ) : ω –1-1→ V ∧ ran ( 𝑐𝑑 ) ⊊ ran 𝑑 ) ) ) → ran 𝑏𝐴 )
16 f1eq1 ( 𝑑 = 𝑒 → ( 𝑑 : ω –1-1→ V ↔ 𝑒 : ω –1-1→ V ) )
17 rneq ( 𝑑 = 𝑒 → ran 𝑑 = ran 𝑒 )
18 17 unieqd ( 𝑑 = 𝑒 ran 𝑑 = ran 𝑒 )
19 18 sseq1d ( 𝑑 = 𝑒 → ( ran 𝑑𝐴 ran 𝑒𝐴 ) )
20 16 19 anbi12d ( 𝑑 = 𝑒 → ( ( 𝑑 : ω –1-1→ V ∧ ran 𝑑𝐴 ) ↔ ( 𝑒 : ω –1-1→ V ∧ ran 𝑒𝐴 ) ) )
21 fveq2 ( 𝑑 = 𝑒 → ( 𝑐𝑑 ) = ( 𝑐𝑒 ) )
22 f1eq1 ( ( 𝑐𝑑 ) = ( 𝑐𝑒 ) → ( ( 𝑐𝑑 ) : ω –1-1→ V ↔ ( 𝑐𝑒 ) : ω –1-1→ V ) )
23 21 22 syl ( 𝑑 = 𝑒 → ( ( 𝑐𝑑 ) : ω –1-1→ V ↔ ( 𝑐𝑒 ) : ω –1-1→ V ) )
24 21 rneqd ( 𝑑 = 𝑒 → ran ( 𝑐𝑑 ) = ran ( 𝑐𝑒 ) )
25 24 unieqd ( 𝑑 = 𝑒 ran ( 𝑐𝑑 ) = ran ( 𝑐𝑒 ) )
26 25 18 psseq12d ( 𝑑 = 𝑒 → ( ran ( 𝑐𝑑 ) ⊊ ran 𝑑 ran ( 𝑐𝑒 ) ⊊ ran 𝑒 ) )
27 23 26 anbi12d ( 𝑑 = 𝑒 → ( ( ( 𝑐𝑑 ) : ω –1-1→ V ∧ ran ( 𝑐𝑑 ) ⊊ ran 𝑑 ) ↔ ( ( 𝑐𝑒 ) : ω –1-1→ V ∧ ran ( 𝑐𝑒 ) ⊊ ran 𝑒 ) ) )
28 20 27 imbi12d ( 𝑑 = 𝑒 → ( ( ( 𝑑 : ω –1-1→ V ∧ ran 𝑑𝐴 ) → ( ( 𝑐𝑑 ) : ω –1-1→ V ∧ ran ( 𝑐𝑑 ) ⊊ ran 𝑑 ) ) ↔ ( ( 𝑒 : ω –1-1→ V ∧ ran 𝑒𝐴 ) → ( ( 𝑐𝑒 ) : ω –1-1→ V ∧ ran ( 𝑐𝑒 ) ⊊ ran 𝑒 ) ) ) )
29 28 cbvalvw ( ∀ 𝑑 ( ( 𝑑 : ω –1-1→ V ∧ ran 𝑑𝐴 ) → ( ( 𝑐𝑑 ) : ω –1-1→ V ∧ ran ( 𝑐𝑑 ) ⊊ ran 𝑑 ) ) ↔ ∀ 𝑒 ( ( 𝑒 : ω –1-1→ V ∧ ran 𝑒𝐴 ) → ( ( 𝑐𝑒 ) : ω –1-1→ V ∧ ran ( 𝑐𝑒 ) ⊊ ran 𝑒 ) ) )
30 29 biimpi ( ∀ 𝑑 ( ( 𝑑 : ω –1-1→ V ∧ ran 𝑑𝐴 ) → ( ( 𝑐𝑑 ) : ω –1-1→ V ∧ ran ( 𝑐𝑑 ) ⊊ ran 𝑑 ) ) → ∀ 𝑒 ( ( 𝑒 : ω –1-1→ V ∧ ran 𝑒𝐴 ) → ( ( 𝑐𝑒 ) : ω –1-1→ V ∧ ran ( 𝑐𝑒 ) ⊊ ran 𝑒 ) ) )
31 30 adantl ( ( ( 𝑏 : ω –1-1→ 𝒫 𝐴𝐴𝐹 ) ∧ ∀ 𝑑 ( ( 𝑑 : ω –1-1→ V ∧ ran 𝑑𝐴 ) → ( ( 𝑐𝑑 ) : ω –1-1→ V ∧ ran ( 𝑐𝑑 ) ⊊ ran 𝑑 ) ) ) → ∀ 𝑒 ( ( 𝑒 : ω –1-1→ V ∧ ran 𝑒𝐴 ) → ( ( 𝑐𝑒 ) : ω –1-1→ V ∧ ran ( 𝑐𝑒 ) ⊊ ran 𝑒 ) ) )
32 eqid ( rec ( 𝑐 , 𝑏 ) ↾ ω ) = ( rec ( 𝑐 , 𝑏 ) ↾ ω )
33 1 8 15 31 32 fin23lem39 ( ( ( 𝑏 : ω –1-1→ 𝒫 𝐴𝐴𝐹 ) ∧ ∀ 𝑑 ( ( 𝑑 : ω –1-1→ V ∧ ran 𝑑𝐴 ) → ( ( 𝑐𝑑 ) : ω –1-1→ V ∧ ran ( 𝑐𝑑 ) ⊊ ran 𝑑 ) ) ) → ¬ 𝐴𝐹 )
34 4 33 exlimddv ( ( 𝑏 : ω –1-1→ 𝒫 𝐴𝐴𝐹 ) → ¬ 𝐴𝐹 )
35 34 pm2.01da ( 𝑏 : ω –1-1→ 𝒫 𝐴 → ¬ 𝐴𝐹 )
36 35 exlimiv ( ∃ 𝑏 𝑏 : ω –1-1→ 𝒫 𝐴 → ¬ 𝐴𝐹 )
37 2 36 syl ( ω ≼ 𝒫 𝐴 → ¬ 𝐴𝐹 )
38 37 con2i ( 𝐴𝐹 → ¬ ω ≼ 𝒫 𝐴 )
39 pwexg ( 𝐴𝐹 → 𝒫 𝐴 ∈ V )
40 isfin4-2 ( 𝒫 𝐴 ∈ V → ( 𝒫 𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝒫 𝐴 ) )
41 39 40 syl ( 𝐴𝐹 → ( 𝒫 𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝒫 𝐴 ) )
42 38 41 mpbird ( 𝐴𝐹 → 𝒫 𝐴 ∈ FinIV )
43 isfin3 ( 𝐴 ∈ FinIII ↔ 𝒫 𝐴 ∈ FinIV )
44 42 43 sylibr ( 𝐴𝐹𝐴 ∈ FinIII )