Step |
Hyp |
Ref |
Expression |
1 |
|
simp2 |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Fin ∧ ( 𝐴 ∪ 𝐵 ) ≈ 𝐴 ) → 𝐴 ∈ Fin ) |
2 |
|
enfi |
⊢ ( 𝐴 ≈ 𝐵 → ( 𝐴 ∈ Fin ↔ 𝐵 ∈ Fin ) ) |
3 |
2
|
3ad2ant1 |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Fin ∧ ( 𝐴 ∪ 𝐵 ) ≈ 𝐴 ) → ( 𝐴 ∈ Fin ↔ 𝐵 ∈ Fin ) ) |
4 |
1 3
|
mpbid |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Fin ∧ ( 𝐴 ∪ 𝐵 ) ≈ 𝐴 ) → 𝐵 ∈ Fin ) |
5 |
|
unfi |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( 𝐴 ∪ 𝐵 ) ∈ Fin ) |
6 |
1 4 5
|
syl2anc |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Fin ∧ ( 𝐴 ∪ 𝐵 ) ≈ 𝐴 ) → ( 𝐴 ∪ 𝐵 ) ∈ Fin ) |
7 |
|
ssun1 |
⊢ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) |
8 |
7
|
a1i |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Fin ∧ ( 𝐴 ∪ 𝐵 ) ≈ 𝐴 ) → 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) ) |
9 |
|
simp3 |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Fin ∧ ( 𝐴 ∪ 𝐵 ) ≈ 𝐴 ) → ( 𝐴 ∪ 𝐵 ) ≈ 𝐴 ) |
10 |
9
|
ensymd |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Fin ∧ ( 𝐴 ∪ 𝐵 ) ≈ 𝐴 ) → 𝐴 ≈ ( 𝐴 ∪ 𝐵 ) ) |
11 |
|
fisseneq |
⊢ ( ( ( 𝐴 ∪ 𝐵 ) ∈ Fin ∧ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) ∧ 𝐴 ≈ ( 𝐴 ∪ 𝐵 ) ) → 𝐴 = ( 𝐴 ∪ 𝐵 ) ) |
12 |
6 8 10 11
|
syl3anc |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Fin ∧ ( 𝐴 ∪ 𝐵 ) ≈ 𝐴 ) → 𝐴 = ( 𝐴 ∪ 𝐵 ) ) |
13 |
|
ssun2 |
⊢ 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) |
14 |
13
|
a1i |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Fin ∧ ( 𝐴 ∪ 𝐵 ) ≈ 𝐴 ) → 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) ) |
15 |
|
simp1 |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Fin ∧ ( 𝐴 ∪ 𝐵 ) ≈ 𝐴 ) → 𝐴 ≈ 𝐵 ) |
16 |
|
entr |
⊢ ( ( ( 𝐴 ∪ 𝐵 ) ≈ 𝐴 ∧ 𝐴 ≈ 𝐵 ) → ( 𝐴 ∪ 𝐵 ) ≈ 𝐵 ) |
17 |
9 15 16
|
syl2anc |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Fin ∧ ( 𝐴 ∪ 𝐵 ) ≈ 𝐴 ) → ( 𝐴 ∪ 𝐵 ) ≈ 𝐵 ) |
18 |
17
|
ensymd |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Fin ∧ ( 𝐴 ∪ 𝐵 ) ≈ 𝐴 ) → 𝐵 ≈ ( 𝐴 ∪ 𝐵 ) ) |
19 |
|
fisseneq |
⊢ ( ( ( 𝐴 ∪ 𝐵 ) ∈ Fin ∧ 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) ∧ 𝐵 ≈ ( 𝐴 ∪ 𝐵 ) ) → 𝐵 = ( 𝐴 ∪ 𝐵 ) ) |
20 |
6 14 18 19
|
syl3anc |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Fin ∧ ( 𝐴 ∪ 𝐵 ) ≈ 𝐴 ) → 𝐵 = ( 𝐴 ∪ 𝐵 ) ) |
21 |
12 20
|
eqtr4d |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Fin ∧ ( 𝐴 ∪ 𝐵 ) ≈ 𝐴 ) → 𝐴 = 𝐵 ) |
22 |
21
|
3expia |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Fin ) → ( ( 𝐴 ∪ 𝐵 ) ≈ 𝐴 → 𝐴 = 𝐵 ) ) |
23 |
|
enrefg |
⊢ ( 𝐴 ∈ Fin → 𝐴 ≈ 𝐴 ) |
24 |
23
|
adantl |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Fin ) → 𝐴 ≈ 𝐴 ) |
25 |
|
unidm |
⊢ ( 𝐴 ∪ 𝐴 ) = 𝐴 |
26 |
|
uneq2 |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 ∪ 𝐴 ) = ( 𝐴 ∪ 𝐵 ) ) |
27 |
25 26
|
eqtr3id |
⊢ ( 𝐴 = 𝐵 → 𝐴 = ( 𝐴 ∪ 𝐵 ) ) |
28 |
27
|
breq1d |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 ≈ 𝐴 ↔ ( 𝐴 ∪ 𝐵 ) ≈ 𝐴 ) ) |
29 |
24 28
|
syl5ibcom |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Fin ) → ( 𝐴 = 𝐵 → ( 𝐴 ∪ 𝐵 ) ≈ 𝐴 ) ) |
30 |
22 29
|
impbid |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Fin ) → ( ( 𝐴 ∪ 𝐵 ) ≈ 𝐴 ↔ 𝐴 = 𝐵 ) ) |