Step |
Hyp |
Ref |
Expression |
1 |
|
simp2 |
|- ( ( A ~~ B /\ A e. Fin /\ ( A u. B ) ~~ A ) -> A e. Fin ) |
2 |
|
enfi |
|- ( A ~~ B -> ( A e. Fin <-> B e. Fin ) ) |
3 |
2
|
3ad2ant1 |
|- ( ( A ~~ B /\ A e. Fin /\ ( A u. B ) ~~ A ) -> ( A e. Fin <-> B e. Fin ) ) |
4 |
1 3
|
mpbid |
|- ( ( A ~~ B /\ A e. Fin /\ ( A u. B ) ~~ A ) -> B e. Fin ) |
5 |
|
unfi |
|- ( ( A e. Fin /\ B e. Fin ) -> ( A u. B ) e. Fin ) |
6 |
1 4 5
|
syl2anc |
|- ( ( A ~~ B /\ A e. Fin /\ ( A u. B ) ~~ A ) -> ( A u. B ) e. Fin ) |
7 |
|
ssun1 |
|- A C_ ( A u. B ) |
8 |
7
|
a1i |
|- ( ( A ~~ B /\ A e. Fin /\ ( A u. B ) ~~ A ) -> A C_ ( A u. B ) ) |
9 |
|
simp3 |
|- ( ( A ~~ B /\ A e. Fin /\ ( A u. B ) ~~ A ) -> ( A u. B ) ~~ A ) |
10 |
9
|
ensymd |
|- ( ( A ~~ B /\ A e. Fin /\ ( A u. B ) ~~ A ) -> A ~~ ( A u. B ) ) |
11 |
|
fisseneq |
|- ( ( ( A u. B ) e. Fin /\ A C_ ( A u. B ) /\ A ~~ ( A u. B ) ) -> A = ( A u. B ) ) |
12 |
6 8 10 11
|
syl3anc |
|- ( ( A ~~ B /\ A e. Fin /\ ( A u. B ) ~~ A ) -> A = ( A u. B ) ) |
13 |
|
ssun2 |
|- B C_ ( A u. B ) |
14 |
13
|
a1i |
|- ( ( A ~~ B /\ A e. Fin /\ ( A u. B ) ~~ A ) -> B C_ ( A u. B ) ) |
15 |
|
simp1 |
|- ( ( A ~~ B /\ A e. Fin /\ ( A u. B ) ~~ A ) -> A ~~ B ) |
16 |
|
entr |
|- ( ( ( A u. B ) ~~ A /\ A ~~ B ) -> ( A u. B ) ~~ B ) |
17 |
9 15 16
|
syl2anc |
|- ( ( A ~~ B /\ A e. Fin /\ ( A u. B ) ~~ A ) -> ( A u. B ) ~~ B ) |
18 |
17
|
ensymd |
|- ( ( A ~~ B /\ A e. Fin /\ ( A u. B ) ~~ A ) -> B ~~ ( A u. B ) ) |
19 |
|
fisseneq |
|- ( ( ( A u. B ) e. Fin /\ B C_ ( A u. B ) /\ B ~~ ( A u. B ) ) -> B = ( A u. B ) ) |
20 |
6 14 18 19
|
syl3anc |
|- ( ( A ~~ B /\ A e. Fin /\ ( A u. B ) ~~ A ) -> B = ( A u. B ) ) |
21 |
12 20
|
eqtr4d |
|- ( ( A ~~ B /\ A e. Fin /\ ( A u. B ) ~~ A ) -> A = B ) |
22 |
21
|
3expia |
|- ( ( A ~~ B /\ A e. Fin ) -> ( ( A u. B ) ~~ A -> A = B ) ) |
23 |
|
enrefg |
|- ( A e. Fin -> A ~~ A ) |
24 |
23
|
adantl |
|- ( ( A ~~ B /\ A e. Fin ) -> A ~~ A ) |
25 |
|
unidm |
|- ( A u. A ) = A |
26 |
|
uneq2 |
|- ( A = B -> ( A u. A ) = ( A u. B ) ) |
27 |
25 26
|
eqtr3id |
|- ( A = B -> A = ( A u. B ) ) |
28 |
27
|
breq1d |
|- ( A = B -> ( A ~~ A <-> ( A u. B ) ~~ A ) ) |
29 |
24 28
|
syl5ibcom |
|- ( ( A ~~ B /\ A e. Fin ) -> ( A = B -> ( A u. B ) ~~ A ) ) |
30 |
22 29
|
impbid |
|- ( ( A ~~ B /\ A e. Fin ) -> ( ( A u. B ) ~~ A <-> A = B ) ) |