| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp2 |
|- ( ( A ~~ B /\ A e. Fin /\ ( A u. B ) ~~ A ) -> A e. Fin ) |
| 2 |
|
enfi |
|- ( A ~~ B -> ( A e. Fin <-> B e. Fin ) ) |
| 3 |
2
|
3ad2ant1 |
|- ( ( A ~~ B /\ A e. Fin /\ ( A u. B ) ~~ A ) -> ( A e. Fin <-> B e. Fin ) ) |
| 4 |
1 3
|
mpbid |
|- ( ( A ~~ B /\ A e. Fin /\ ( A u. B ) ~~ A ) -> B e. Fin ) |
| 5 |
|
unfi |
|- ( ( A e. Fin /\ B e. Fin ) -> ( A u. B ) e. Fin ) |
| 6 |
1 4 5
|
syl2anc |
|- ( ( A ~~ B /\ A e. Fin /\ ( A u. B ) ~~ A ) -> ( A u. B ) e. Fin ) |
| 7 |
|
ssun1 |
|- A C_ ( A u. B ) |
| 8 |
7
|
a1i |
|- ( ( A ~~ B /\ A e. Fin /\ ( A u. B ) ~~ A ) -> A C_ ( A u. B ) ) |
| 9 |
|
simp3 |
|- ( ( A ~~ B /\ A e. Fin /\ ( A u. B ) ~~ A ) -> ( A u. B ) ~~ A ) |
| 10 |
9
|
ensymd |
|- ( ( A ~~ B /\ A e. Fin /\ ( A u. B ) ~~ A ) -> A ~~ ( A u. B ) ) |
| 11 |
|
fisseneq |
|- ( ( ( A u. B ) e. Fin /\ A C_ ( A u. B ) /\ A ~~ ( A u. B ) ) -> A = ( A u. B ) ) |
| 12 |
6 8 10 11
|
syl3anc |
|- ( ( A ~~ B /\ A e. Fin /\ ( A u. B ) ~~ A ) -> A = ( A u. B ) ) |
| 13 |
|
ssun2 |
|- B C_ ( A u. B ) |
| 14 |
13
|
a1i |
|- ( ( A ~~ B /\ A e. Fin /\ ( A u. B ) ~~ A ) -> B C_ ( A u. B ) ) |
| 15 |
|
simp1 |
|- ( ( A ~~ B /\ A e. Fin /\ ( A u. B ) ~~ A ) -> A ~~ B ) |
| 16 |
|
entr |
|- ( ( ( A u. B ) ~~ A /\ A ~~ B ) -> ( A u. B ) ~~ B ) |
| 17 |
9 15 16
|
syl2anc |
|- ( ( A ~~ B /\ A e. Fin /\ ( A u. B ) ~~ A ) -> ( A u. B ) ~~ B ) |
| 18 |
17
|
ensymd |
|- ( ( A ~~ B /\ A e. Fin /\ ( A u. B ) ~~ A ) -> B ~~ ( A u. B ) ) |
| 19 |
|
fisseneq |
|- ( ( ( A u. B ) e. Fin /\ B C_ ( A u. B ) /\ B ~~ ( A u. B ) ) -> B = ( A u. B ) ) |
| 20 |
6 14 18 19
|
syl3anc |
|- ( ( A ~~ B /\ A e. Fin /\ ( A u. B ) ~~ A ) -> B = ( A u. B ) ) |
| 21 |
12 20
|
eqtr4d |
|- ( ( A ~~ B /\ A e. Fin /\ ( A u. B ) ~~ A ) -> A = B ) |
| 22 |
21
|
3expia |
|- ( ( A ~~ B /\ A e. Fin ) -> ( ( A u. B ) ~~ A -> A = B ) ) |
| 23 |
|
enrefg |
|- ( A e. Fin -> A ~~ A ) |
| 24 |
23
|
adantl |
|- ( ( A ~~ B /\ A e. Fin ) -> A ~~ A ) |
| 25 |
|
unidm |
|- ( A u. A ) = A |
| 26 |
|
uneq2 |
|- ( A = B -> ( A u. A ) = ( A u. B ) ) |
| 27 |
25 26
|
eqtr3id |
|- ( A = B -> A = ( A u. B ) ) |
| 28 |
27
|
breq1d |
|- ( A = B -> ( A ~~ A <-> ( A u. B ) ~~ A ) ) |
| 29 |
24 28
|
syl5ibcom |
|- ( ( A ~~ B /\ A e. Fin ) -> ( A = B -> ( A u. B ) ~~ A ) ) |
| 30 |
22 29
|
impbid |
|- ( ( A ~~ B /\ A e. Fin ) -> ( ( A u. B ) ~~ A <-> A = B ) ) |