Step |
Hyp |
Ref |
Expression |
1 |
|
idomsubgmo.g |
⊢ 𝐺 = ( ( mulGrp ‘ 𝑅 ) ↾s ( Unit ‘ 𝑅 ) ) |
2 |
|
fvex |
⊢ ( Base ‘ 𝐺 ) ∈ V |
3 |
2
|
rabex |
⊢ { 𝑧 ∈ ( Base ‘ 𝐺 ) ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ∥ 𝑁 } ∈ V |
4 |
|
simp2l |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( ( ♯ ‘ 𝑦 ) = 𝑁 ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) ) → 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
6 |
5
|
subgss |
⊢ ( 𝑦 ∈ ( SubGrp ‘ 𝐺 ) → 𝑦 ⊆ ( Base ‘ 𝐺 ) ) |
7 |
4 6
|
syl |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( ( ♯ ‘ 𝑦 ) = 𝑁 ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) ) → 𝑦 ⊆ ( Base ‘ 𝐺 ) ) |
8 |
|
simpl2l |
⊢ ( ( ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( ( ♯ ‘ 𝑦 ) = 𝑁 ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) ) ∧ 𝑧 ∈ 𝑦 ) → 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ) |
9 |
|
simp3l |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( ( ♯ ‘ 𝑦 ) = 𝑁 ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) ) → ( ♯ ‘ 𝑦 ) = 𝑁 ) |
10 |
|
simp1r |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( ( ♯ ‘ 𝑦 ) = 𝑁 ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) ) → 𝑁 ∈ ℕ ) |
11 |
10
|
nnnn0d |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( ( ♯ ‘ 𝑦 ) = 𝑁 ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) ) → 𝑁 ∈ ℕ0 ) |
12 |
9 11
|
eqeltrd |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( ( ♯ ‘ 𝑦 ) = 𝑁 ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) ) → ( ♯ ‘ 𝑦 ) ∈ ℕ0 ) |
13 |
|
vex |
⊢ 𝑦 ∈ V |
14 |
|
hashclb |
⊢ ( 𝑦 ∈ V → ( 𝑦 ∈ Fin ↔ ( ♯ ‘ 𝑦 ) ∈ ℕ0 ) ) |
15 |
13 14
|
ax-mp |
⊢ ( 𝑦 ∈ Fin ↔ ( ♯ ‘ 𝑦 ) ∈ ℕ0 ) |
16 |
12 15
|
sylibr |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( ( ♯ ‘ 𝑦 ) = 𝑁 ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) ) → 𝑦 ∈ Fin ) |
17 |
16
|
adantr |
⊢ ( ( ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( ( ♯ ‘ 𝑦 ) = 𝑁 ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) ) ∧ 𝑧 ∈ 𝑦 ) → 𝑦 ∈ Fin ) |
18 |
|
simpr |
⊢ ( ( ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( ( ♯ ‘ 𝑦 ) = 𝑁 ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) ) ∧ 𝑧 ∈ 𝑦 ) → 𝑧 ∈ 𝑦 ) |
19 |
|
eqid |
⊢ ( od ‘ 𝐺 ) = ( od ‘ 𝐺 ) |
20 |
19
|
odsubdvds |
⊢ ( ( 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑦 ∈ Fin ∧ 𝑧 ∈ 𝑦 ) → ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ∥ ( ♯ ‘ 𝑦 ) ) |
21 |
8 17 18 20
|
syl3anc |
⊢ ( ( ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( ( ♯ ‘ 𝑦 ) = 𝑁 ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) ) ∧ 𝑧 ∈ 𝑦 ) → ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ∥ ( ♯ ‘ 𝑦 ) ) |
22 |
9
|
adantr |
⊢ ( ( ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( ( ♯ ‘ 𝑦 ) = 𝑁 ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) ) ∧ 𝑧 ∈ 𝑦 ) → ( ♯ ‘ 𝑦 ) = 𝑁 ) |
23 |
21 22
|
breqtrd |
⊢ ( ( ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( ( ♯ ‘ 𝑦 ) = 𝑁 ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) ) ∧ 𝑧 ∈ 𝑦 ) → ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ∥ 𝑁 ) |
24 |
7 23
|
ssrabdv |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( ( ♯ ‘ 𝑦 ) = 𝑁 ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) ) → 𝑦 ⊆ { 𝑧 ∈ ( Base ‘ 𝐺 ) ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ∥ 𝑁 } ) |
25 |
|
simp2r |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( ( ♯ ‘ 𝑦 ) = 𝑁 ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) ) → 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) |
26 |
5
|
subgss |
⊢ ( 𝑥 ∈ ( SubGrp ‘ 𝐺 ) → 𝑥 ⊆ ( Base ‘ 𝐺 ) ) |
27 |
25 26
|
syl |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( ( ♯ ‘ 𝑦 ) = 𝑁 ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) ) → 𝑥 ⊆ ( Base ‘ 𝐺 ) ) |
28 |
|
simpl2r |
⊢ ( ( ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( ( ♯ ‘ 𝑦 ) = 𝑁 ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) ) ∧ 𝑧 ∈ 𝑥 ) → 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) |
29 |
|
simp3r |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( ( ♯ ‘ 𝑦 ) = 𝑁 ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) ) → ( ♯ ‘ 𝑥 ) = 𝑁 ) |
30 |
29 11
|
eqeltrd |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( ( ♯ ‘ 𝑦 ) = 𝑁 ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) ) → ( ♯ ‘ 𝑥 ) ∈ ℕ0 ) |
31 |
|
vex |
⊢ 𝑥 ∈ V |
32 |
|
hashclb |
⊢ ( 𝑥 ∈ V → ( 𝑥 ∈ Fin ↔ ( ♯ ‘ 𝑥 ) ∈ ℕ0 ) ) |
33 |
31 32
|
ax-mp |
⊢ ( 𝑥 ∈ Fin ↔ ( ♯ ‘ 𝑥 ) ∈ ℕ0 ) |
34 |
30 33
|
sylibr |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( ( ♯ ‘ 𝑦 ) = 𝑁 ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) ) → 𝑥 ∈ Fin ) |
35 |
34
|
adantr |
⊢ ( ( ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( ( ♯ ‘ 𝑦 ) = 𝑁 ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) ) ∧ 𝑧 ∈ 𝑥 ) → 𝑥 ∈ Fin ) |
36 |
|
simpr |
⊢ ( ( ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( ( ♯ ‘ 𝑦 ) = 𝑁 ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) ) ∧ 𝑧 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) |
37 |
19
|
odsubdvds |
⊢ ( ( 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ Fin ∧ 𝑧 ∈ 𝑥 ) → ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ∥ ( ♯ ‘ 𝑥 ) ) |
38 |
28 35 36 37
|
syl3anc |
⊢ ( ( ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( ( ♯ ‘ 𝑦 ) = 𝑁 ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) ) ∧ 𝑧 ∈ 𝑥 ) → ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ∥ ( ♯ ‘ 𝑥 ) ) |
39 |
29
|
adantr |
⊢ ( ( ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( ( ♯ ‘ 𝑦 ) = 𝑁 ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) ) ∧ 𝑧 ∈ 𝑥 ) → ( ♯ ‘ 𝑥 ) = 𝑁 ) |
40 |
38 39
|
breqtrd |
⊢ ( ( ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( ( ♯ ‘ 𝑦 ) = 𝑁 ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) ) ∧ 𝑧 ∈ 𝑥 ) → ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ∥ 𝑁 ) |
41 |
27 40
|
ssrabdv |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( ( ♯ ‘ 𝑦 ) = 𝑁 ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) ) → 𝑥 ⊆ { 𝑧 ∈ ( Base ‘ 𝐺 ) ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ∥ 𝑁 } ) |
42 |
24 41
|
unssd |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( ( ♯ ‘ 𝑦 ) = 𝑁 ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) ) → ( 𝑦 ∪ 𝑥 ) ⊆ { 𝑧 ∈ ( Base ‘ 𝐺 ) ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ∥ 𝑁 } ) |
43 |
|
ssdomg |
⊢ ( { 𝑧 ∈ ( Base ‘ 𝐺 ) ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ∥ 𝑁 } ∈ V → ( ( 𝑦 ∪ 𝑥 ) ⊆ { 𝑧 ∈ ( Base ‘ 𝐺 ) ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ∥ 𝑁 } → ( 𝑦 ∪ 𝑥 ) ≼ { 𝑧 ∈ ( Base ‘ 𝐺 ) ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ∥ 𝑁 } ) ) |
44 |
3 42 43
|
mpsyl |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( ( ♯ ‘ 𝑦 ) = 𝑁 ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) ) → ( 𝑦 ∪ 𝑥 ) ≼ { 𝑧 ∈ ( Base ‘ 𝐺 ) ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ∥ 𝑁 } ) |
45 |
1 5 19
|
idomodle |
⊢ ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ) → ( ♯ ‘ { 𝑧 ∈ ( Base ‘ 𝐺 ) ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ∥ 𝑁 } ) ≤ 𝑁 ) |
46 |
45
|
3ad2ant1 |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( ( ♯ ‘ 𝑦 ) = 𝑁 ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) ) → ( ♯ ‘ { 𝑧 ∈ ( Base ‘ 𝐺 ) ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ∥ 𝑁 } ) ≤ 𝑁 ) |
47 |
46 9
|
breqtrrd |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( ( ♯ ‘ 𝑦 ) = 𝑁 ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) ) → ( ♯ ‘ { 𝑧 ∈ ( Base ‘ 𝐺 ) ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ∥ 𝑁 } ) ≤ ( ♯ ‘ 𝑦 ) ) |
48 |
3
|
a1i |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( ( ♯ ‘ 𝑦 ) = 𝑁 ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) ) → { 𝑧 ∈ ( Base ‘ 𝐺 ) ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ∥ 𝑁 } ∈ V ) |
49 |
|
hashbnd |
⊢ ( ( { 𝑧 ∈ ( Base ‘ 𝐺 ) ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ∥ 𝑁 } ∈ V ∧ ( ♯ ‘ 𝑦 ) ∈ ℕ0 ∧ ( ♯ ‘ { 𝑧 ∈ ( Base ‘ 𝐺 ) ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ∥ 𝑁 } ) ≤ ( ♯ ‘ 𝑦 ) ) → { 𝑧 ∈ ( Base ‘ 𝐺 ) ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ∥ 𝑁 } ∈ Fin ) |
50 |
48 12 47 49
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( ( ♯ ‘ 𝑦 ) = 𝑁 ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) ) → { 𝑧 ∈ ( Base ‘ 𝐺 ) ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ∥ 𝑁 } ∈ Fin ) |
51 |
|
hashdom |
⊢ ( ( { 𝑧 ∈ ( Base ‘ 𝐺 ) ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ∥ 𝑁 } ∈ Fin ∧ 𝑦 ∈ V ) → ( ( ♯ ‘ { 𝑧 ∈ ( Base ‘ 𝐺 ) ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ∥ 𝑁 } ) ≤ ( ♯ ‘ 𝑦 ) ↔ { 𝑧 ∈ ( Base ‘ 𝐺 ) ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ∥ 𝑁 } ≼ 𝑦 ) ) |
52 |
50 13 51
|
sylancl |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( ( ♯ ‘ 𝑦 ) = 𝑁 ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) ) → ( ( ♯ ‘ { 𝑧 ∈ ( Base ‘ 𝐺 ) ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ∥ 𝑁 } ) ≤ ( ♯ ‘ 𝑦 ) ↔ { 𝑧 ∈ ( Base ‘ 𝐺 ) ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ∥ 𝑁 } ≼ 𝑦 ) ) |
53 |
47 52
|
mpbid |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( ( ♯ ‘ 𝑦 ) = 𝑁 ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) ) → { 𝑧 ∈ ( Base ‘ 𝐺 ) ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ∥ 𝑁 } ≼ 𝑦 ) |
54 |
|
domtr |
⊢ ( ( ( 𝑦 ∪ 𝑥 ) ≼ { 𝑧 ∈ ( Base ‘ 𝐺 ) ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ∥ 𝑁 } ∧ { 𝑧 ∈ ( Base ‘ 𝐺 ) ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ∥ 𝑁 } ≼ 𝑦 ) → ( 𝑦 ∪ 𝑥 ) ≼ 𝑦 ) |
55 |
44 53 54
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( ( ♯ ‘ 𝑦 ) = 𝑁 ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) ) → ( 𝑦 ∪ 𝑥 ) ≼ 𝑦 ) |
56 |
13 31
|
unex |
⊢ ( 𝑦 ∪ 𝑥 ) ∈ V |
57 |
|
ssun1 |
⊢ 𝑦 ⊆ ( 𝑦 ∪ 𝑥 ) |
58 |
|
ssdomg |
⊢ ( ( 𝑦 ∪ 𝑥 ) ∈ V → ( 𝑦 ⊆ ( 𝑦 ∪ 𝑥 ) → 𝑦 ≼ ( 𝑦 ∪ 𝑥 ) ) ) |
59 |
56 57 58
|
mp2 |
⊢ 𝑦 ≼ ( 𝑦 ∪ 𝑥 ) |
60 |
|
sbth |
⊢ ( ( ( 𝑦 ∪ 𝑥 ) ≼ 𝑦 ∧ 𝑦 ≼ ( 𝑦 ∪ 𝑥 ) ) → ( 𝑦 ∪ 𝑥 ) ≈ 𝑦 ) |
61 |
55 59 60
|
sylancl |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( ( ♯ ‘ 𝑦 ) = 𝑁 ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) ) → ( 𝑦 ∪ 𝑥 ) ≈ 𝑦 ) |
62 |
9 29
|
eqtr4d |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( ( ♯ ‘ 𝑦 ) = 𝑁 ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) ) → ( ♯ ‘ 𝑦 ) = ( ♯ ‘ 𝑥 ) ) |
63 |
|
hashen |
⊢ ( ( 𝑦 ∈ Fin ∧ 𝑥 ∈ Fin ) → ( ( ♯ ‘ 𝑦 ) = ( ♯ ‘ 𝑥 ) ↔ 𝑦 ≈ 𝑥 ) ) |
64 |
16 34 63
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( ( ♯ ‘ 𝑦 ) = 𝑁 ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) ) → ( ( ♯ ‘ 𝑦 ) = ( ♯ ‘ 𝑥 ) ↔ 𝑦 ≈ 𝑥 ) ) |
65 |
62 64
|
mpbid |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( ( ♯ ‘ 𝑦 ) = 𝑁 ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) ) → 𝑦 ≈ 𝑥 ) |
66 |
|
fiuneneq |
⊢ ( ( 𝑦 ≈ 𝑥 ∧ 𝑦 ∈ Fin ) → ( ( 𝑦 ∪ 𝑥 ) ≈ 𝑦 ↔ 𝑦 = 𝑥 ) ) |
67 |
65 16 66
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( ( ♯ ‘ 𝑦 ) = 𝑁 ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) ) → ( ( 𝑦 ∪ 𝑥 ) ≈ 𝑦 ↔ 𝑦 = 𝑥 ) ) |
68 |
61 67
|
mpbid |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( ( ♯ ‘ 𝑦 ) = 𝑁 ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) ) → 𝑦 = 𝑥 ) |
69 |
68
|
3expia |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) ) → ( ( ( ♯ ‘ 𝑦 ) = 𝑁 ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) → 𝑦 = 𝑥 ) ) |
70 |
69
|
ralrimivva |
⊢ ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ) → ∀ 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∀ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ( ( ( ♯ ‘ 𝑦 ) = 𝑁 ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) → 𝑦 = 𝑥 ) ) |
71 |
|
fveqeq2 |
⊢ ( 𝑦 = 𝑥 → ( ( ♯ ‘ 𝑦 ) = 𝑁 ↔ ( ♯ ‘ 𝑥 ) = 𝑁 ) ) |
72 |
71
|
rmo4 |
⊢ ( ∃* 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ( ♯ ‘ 𝑦 ) = 𝑁 ↔ ∀ 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∀ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ( ( ( ♯ ‘ 𝑦 ) = 𝑁 ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) → 𝑦 = 𝑥 ) ) |
73 |
70 72
|
sylibr |
⊢ ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ) → ∃* 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ( ♯ ‘ 𝑦 ) = 𝑁 ) |