| Step |
Hyp |
Ref |
Expression |
| 1 |
|
flimtop |
⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → 𝐽 ∈ Top ) |
| 2 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 3 |
2
|
flimelbas |
⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → 𝐴 ∈ ∪ 𝐽 ) |
| 4 |
3
|
snssd |
⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → { 𝐴 } ⊆ ∪ 𝐽 ) |
| 5 |
2
|
clsss3 |
⊢ ( ( 𝐽 ∈ Top ∧ { 𝐴 } ⊆ ∪ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ ∪ 𝐽 ) |
| 6 |
1 4 5
|
syl2anc |
⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → ( ( cls ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ ∪ 𝐽 ) |
| 7 |
6
|
sselda |
⊢ ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ { 𝐴 } ) ) → 𝑥 ∈ ∪ 𝐽 ) |
| 8 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ { 𝐴 } ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑥 ∈ 𝑦 ) ) → 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) |
| 9 |
8 1
|
syl |
⊢ ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ { 𝐴 } ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑥 ∈ 𝑦 ) ) → 𝐽 ∈ Top ) |
| 10 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ { 𝐴 } ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑥 ∈ 𝑦 ) ) → 𝑦 ∈ 𝐽 ) |
| 11 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ { 𝐴 } ) ) → 𝐽 ∈ Top ) |
| 12 |
4
|
adantr |
⊢ ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ { 𝐴 } ) ) → { 𝐴 } ⊆ ∪ 𝐽 ) |
| 13 |
|
simpr |
⊢ ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ { 𝐴 } ) ) → 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ { 𝐴 } ) ) |
| 14 |
11 12 13
|
3jca |
⊢ ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ { 𝐴 } ) ) → ( 𝐽 ∈ Top ∧ { 𝐴 } ⊆ ∪ 𝐽 ∧ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) |
| 15 |
2
|
clsndisj |
⊢ ( ( ( 𝐽 ∈ Top ∧ { 𝐴 } ⊆ ∪ 𝐽 ∧ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ { 𝐴 } ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑥 ∈ 𝑦 ) ) → ( 𝑦 ∩ { 𝐴 } ) ≠ ∅ ) |
| 16 |
|
disjsn |
⊢ ( ( 𝑦 ∩ { 𝐴 } ) = ∅ ↔ ¬ 𝐴 ∈ 𝑦 ) |
| 17 |
16
|
necon2abii |
⊢ ( 𝐴 ∈ 𝑦 ↔ ( 𝑦 ∩ { 𝐴 } ) ≠ ∅ ) |
| 18 |
15 17
|
sylibr |
⊢ ( ( ( 𝐽 ∈ Top ∧ { 𝐴 } ⊆ ∪ 𝐽 ∧ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ { 𝐴 } ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑥 ∈ 𝑦 ) ) → 𝐴 ∈ 𝑦 ) |
| 19 |
14 18
|
sylan |
⊢ ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ { 𝐴 } ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑥 ∈ 𝑦 ) ) → 𝐴 ∈ 𝑦 ) |
| 20 |
|
opnneip |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑦 ∈ 𝐽 ∧ 𝐴 ∈ 𝑦 ) → 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) |
| 21 |
9 10 19 20
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ { 𝐴 } ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑥 ∈ 𝑦 ) ) → 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) |
| 22 |
|
flimnei |
⊢ ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → 𝑦 ∈ 𝐹 ) |
| 23 |
8 21 22
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ { 𝐴 } ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑥 ∈ 𝑦 ) ) → 𝑦 ∈ 𝐹 ) |
| 24 |
23
|
expr |
⊢ ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ { 𝐴 } ) ) ∧ 𝑦 ∈ 𝐽 ) → ( 𝑥 ∈ 𝑦 → 𝑦 ∈ 𝐹 ) ) |
| 25 |
24
|
ralrimiva |
⊢ ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ { 𝐴 } ) ) → ∀ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 → 𝑦 ∈ 𝐹 ) ) |
| 26 |
|
toptopon2 |
⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 27 |
11 26
|
sylib |
⊢ ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ { 𝐴 } ) ) → 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 28 |
2
|
flimfil |
⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → 𝐹 ∈ ( Fil ‘ ∪ 𝐽 ) ) |
| 29 |
28
|
adantr |
⊢ ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ { 𝐴 } ) ) → 𝐹 ∈ ( Fil ‘ ∪ 𝐽 ) ) |
| 30 |
|
flimopn |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ∧ 𝐹 ∈ ( Fil ‘ ∪ 𝐽 ) ) → ( 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ↔ ( 𝑥 ∈ ∪ 𝐽 ∧ ∀ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 → 𝑦 ∈ 𝐹 ) ) ) ) |
| 31 |
27 29 30
|
syl2anc |
⊢ ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ { 𝐴 } ) ) → ( 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ↔ ( 𝑥 ∈ ∪ 𝐽 ∧ ∀ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 → 𝑦 ∈ 𝐹 ) ) ) ) |
| 32 |
7 25 31
|
mpbir2and |
⊢ ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ { 𝐴 } ) ) → 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ) |
| 33 |
32
|
ex |
⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ { 𝐴 } ) → 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ) ) |
| 34 |
33
|
ssrdv |
⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → ( ( cls ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ ( 𝐽 fLim 𝐹 ) ) |