Metamath Proof Explorer


Theorem footex

Description: From a point C outside of a line A , there exists a point x on A such that ( C L x ) is perpendicular to A . This point is unique, see foot . (Contributed by Thierry Arnoux, 19-Oct-2019) (Revised by Thierry Arnoux, 1-Jul-2023)

Ref Expression
Hypotheses isperp.p 𝑃 = ( Base ‘ 𝐺 )
isperp.d = ( dist ‘ 𝐺 )
isperp.i 𝐼 = ( Itv ‘ 𝐺 )
isperp.l 𝐿 = ( LineG ‘ 𝐺 )
isperp.g ( 𝜑𝐺 ∈ TarskiG )
isperp.a ( 𝜑𝐴 ∈ ran 𝐿 )
foot.x ( 𝜑𝐶𝑃 )
foot.y ( 𝜑 → ¬ 𝐶𝐴 )
Assertion footex ( 𝜑 → ∃ 𝑥𝐴 ( 𝐶 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐴 )

Proof

Step Hyp Ref Expression
1 isperp.p 𝑃 = ( Base ‘ 𝐺 )
2 isperp.d = ( dist ‘ 𝐺 )
3 isperp.i 𝐼 = ( Itv ‘ 𝐺 )
4 isperp.l 𝐿 = ( LineG ‘ 𝐺 )
5 isperp.g ( 𝜑𝐺 ∈ TarskiG )
6 isperp.a ( 𝜑𝐴 ∈ ran 𝐿 )
7 foot.x ( 𝜑𝐶𝑃 )
8 foot.y ( 𝜑 → ¬ 𝐶𝐴 )
9 eqid ( pInvG ‘ 𝐺 ) = ( pInvG ‘ 𝐺 )
10 5 ad5antr ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) → 𝐺 ∈ TarskiG )
11 10 ad2antrr ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) → 𝐺 ∈ TarskiG )
12 11 ad2antrr ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) → 𝐺 ∈ TarskiG )
13 12 ad2antrr ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) → 𝐺 ∈ TarskiG )
14 13 ad2antrr ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → 𝐺 ∈ TarskiG )
15 eqid ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) = ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 )
16 7 ad5antr ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) → 𝐶𝑃 )
17 16 ad6antr ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) → 𝐶𝑃 )
18 17 ad2antrr ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → 𝐶𝑃 )
19 simplr ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → 𝑑𝑃 )
20 simp-4r ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) → 𝑦𝑃 )
21 20 ad2antrr ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) → 𝑦𝑃 )
22 21 ad2antrr ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) → 𝑦𝑃 )
23 22 ad2antrr ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → 𝑦𝑃 )
24 simprr ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) )
25 24 eqcomd ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → ( 𝑦 𝐶 ) = ( 𝑦 𝑑 ) )
26 1 2 3 4 9 14 15 18 19 23 25 midexlem ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → ∃ 𝑥𝑃 𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) )
27 12 ad5antr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝐺 ∈ TarskiG )
28 6 ad5antr ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) → 𝐴 ∈ ran 𝐿 )
29 28 ad9antr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝐴 ∈ ran 𝐿 )
30 18 adantr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝐶𝑃 )
31 8 ad3antrrr ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) → ¬ 𝐶𝐴 )
32 31 ad10antr ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → ¬ 𝐶𝐴 )
33 32 adantr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → ¬ 𝐶𝐴 )
34 simp-7r ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) → 𝑎𝑃 )
35 34 ad2antrr ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) → 𝑎𝑃 )
36 35 ad5antr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝑎𝑃 )
37 simplr ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) → 𝑏𝑃 )
38 37 ad10antr ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → 𝑏𝑃 )
39 38 adantr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝑏𝑃 )
40 simp-4r ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) → 𝑝𝑃 )
41 40 ad5antr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝑝𝑃 )
42 simprl ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝑥𝑃 )
43 21 ad5antr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝑦𝑃 )
44 simp-7r ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝑧𝑃 )
45 simpllr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝑑𝑃 )
46 simp-11r ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) )
47 46 simpld ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → 𝐴 = ( 𝑎 𝐿 𝑏 ) )
48 47 adantr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝐴 = ( 𝑎 𝐿 𝑏 ) )
49 46 simprd ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → 𝑎𝑏 )
50 49 adantr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝑎𝑏 )
51 simp-9r ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) )
52 51 simpld ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) )
53 52 adantr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) )
54 51 simprd ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) )
55 54 adantr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) )
56 simp-7r ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) )
57 56 adantr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) )
58 simp-5r ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) )
59 58 simpld ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) )
60 59 adantr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) )
61 58 simprd ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) )
62 61 adantr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) )
63 simp-5r ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝑞𝑃 )
64 simpllr ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) )
65 64 simpld ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) )
66 65 adantr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) )
67 64 simprd ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) )
68 67 adantr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) )
69 simplrl ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) )
70 24 adantr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) )
71 simprr ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) )
72 1 2 3 4 27 29 30 33 36 39 41 42 43 44 45 48 50 53 55 57 60 62 63 66 68 69 70 71 footexlem1 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → 𝑥𝐴 )
73 1 2 3 4 27 29 30 33 36 39 41 42 43 44 45 48 50 53 55 57 60 62 63 66 68 69 70 71 footexlem2 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) ∧ ( 𝑥𝑃𝑑 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑥 ) ‘ 𝐶 ) ) ) → ( 𝐶 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐴 )
74 26 72 73 reximssdv ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) ∧ 𝑑𝑃 ) ∧ ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) ) → ∃ 𝑥𝐴 ( 𝐶 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐴 )
75 simp-4r ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) → 𝑧𝑃 )
76 eqid ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) = ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 )
77 simplr ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) → 𝑞𝑃 )
78 1 2 3 4 9 13 75 76 77 mircl ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) → ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) ∈ 𝑃 )
79 1 2 3 13 78 22 22 17 axtgsegcon ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) → ∃ 𝑑𝑃 ( 𝑦 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑧 ) ‘ 𝑞 ) 𝐼 𝑑 ) ∧ ( 𝑦 𝑑 ) = ( 𝑦 𝐶 ) ) )
80 74 79 r19.29a ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) ∧ 𝑞𝑃 ) ∧ ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) ) → ∃ 𝑥𝐴 ( 𝐶 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐴 )
81 1 2 3 12 40 21 21 35 axtgsegcon ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) → ∃ 𝑞𝑃 ( 𝑦 ∈ ( 𝑝 𝐼 𝑞 ) ∧ ( 𝑦 𝑞 ) = ( 𝑦 𝑎 ) ) )
82 80 81 r19.29a ( ( ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) ∧ 𝑧𝑃 ) ∧ ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) ) → ∃ 𝑥𝐴 ( 𝐶 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐴 )
83 simplr ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) → 𝑝𝑃 )
84 1 2 3 11 34 20 20 83 axtgsegcon ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) → ∃ 𝑧𝑃 ( 𝑦 ∈ ( 𝑎 𝐼 𝑧 ) ∧ ( 𝑦 𝑧 ) = ( 𝑦 𝑝 ) ) )
85 82 84 r19.29a ( ( ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) ∧ 𝑝𝑃 ) ∧ 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) ) → ∃ 𝑥𝐴 ( 𝐶 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐴 )
86 eqid ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) = ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 )
87 simplr ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) → 𝑦𝑃 )
88 simp-5r ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) → 𝑎𝑃 )
89 simprr ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) → ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) )
90 1 2 3 4 9 10 86 87 16 88 89 midexlem ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) → ∃ 𝑝𝑃 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑝 ) ‘ 𝑦 ) )
91 85 90 r19.29a ( ( ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) ∧ 𝑦𝑃 ) ∧ ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) ) → ∃ 𝑥𝐴 ( 𝐶 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐴 )
92 5 ad3antrrr ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) → 𝐺 ∈ TarskiG )
93 simpllr ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) → 𝑎𝑃 )
94 7 ad3antrrr ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) → 𝐶𝑃 )
95 1 2 3 92 37 93 93 94 axtgsegcon ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) → ∃ 𝑦𝑃 ( 𝑎 ∈ ( 𝑏 𝐼 𝑦 ) ∧ ( 𝑎 𝑦 ) = ( 𝑎 𝐶 ) ) )
96 91 95 r19.29a ( ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) ∧ ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) ) → ∃ 𝑥𝐴 ( 𝐶 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐴 )
97 1 3 4 5 6 tgisline ( 𝜑 → ∃ 𝑎𝑃𝑏𝑃 ( 𝐴 = ( 𝑎 𝐿 𝑏 ) ∧ 𝑎𝑏 ) )
98 96 97 r19.29vva ( 𝜑 → ∃ 𝑥𝐴 ( 𝐶 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐴 )