Step |
Hyp |
Ref |
Expression |
1 |
|
isperp.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
isperp.d |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
isperp.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
isperp.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
5 |
|
isperp.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
6 |
|
isperp.a |
⊢ ( 𝜑 → 𝐴 ∈ ran 𝐿 ) |
7 |
|
foot.x |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
8 |
|
foot.y |
⊢ ( 𝜑 → ¬ 𝐶 ∈ 𝐴 ) |
9 |
|
footexlem.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝑃 ) |
10 |
|
footexlem.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑃 ) |
11 |
|
footexlem.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑃 ) |
12 |
|
footexlem.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑃 ) |
13 |
|
footexlem.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑃 ) |
14 |
|
footexlem.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑃 ) |
15 |
|
footexlem.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
16 |
|
footexlem.1 |
⊢ ( 𝜑 → 𝐴 = ( 𝐸 𝐿 𝐹 ) ) |
17 |
|
footexlem.2 |
⊢ ( 𝜑 → 𝐸 ≠ 𝐹 ) |
18 |
|
footexlem.3 |
⊢ ( 𝜑 → 𝐸 ∈ ( 𝐹 𝐼 𝑌 ) ) |
19 |
|
footexlem.4 |
⊢ ( 𝜑 → ( 𝐸 − 𝑌 ) = ( 𝐸 − 𝐶 ) ) |
20 |
|
footexlem.5 |
⊢ ( 𝜑 → 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑅 ) ‘ 𝑌 ) ) |
21 |
|
footexlem.6 |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝐸 𝐼 𝑍 ) ) |
22 |
|
footexlem.7 |
⊢ ( 𝜑 → ( 𝑌 − 𝑍 ) = ( 𝑌 − 𝑅 ) ) |
23 |
|
footexlem.q |
⊢ ( 𝜑 → 𝑄 ∈ 𝑃 ) |
24 |
|
footexlem.8 |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑅 𝐼 𝑄 ) ) |
25 |
|
footexlem.9 |
⊢ ( 𝜑 → ( 𝑌 − 𝑄 ) = ( 𝑌 − 𝐸 ) ) |
26 |
|
footexlem.10 |
⊢ ( 𝜑 → 𝑌 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑍 ) ‘ 𝑄 ) 𝐼 𝐷 ) ) |
27 |
|
footexlem.11 |
⊢ ( 𝜑 → ( 𝑌 − 𝐷 ) = ( 𝑌 − 𝐶 ) ) |
28 |
|
footexlem.12 |
⊢ ( 𝜑 → 𝐷 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑋 ) ‘ 𝐶 ) ) |
29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
|
footexlem1 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
30 |
|
nelne2 |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ ¬ 𝐶 ∈ 𝐴 ) → 𝑋 ≠ 𝐶 ) |
31 |
29 8 30
|
syl2anc |
⊢ ( 𝜑 → 𝑋 ≠ 𝐶 ) |
32 |
31
|
necomd |
⊢ ( 𝜑 → 𝐶 ≠ 𝑋 ) |
33 |
1 3 4 5 7 12 32
|
tgelrnln |
⊢ ( 𝜑 → ( 𝐶 𝐿 𝑋 ) ∈ ran 𝐿 ) |
34 |
1 3 4 5 7 12 32
|
tglinerflx2 |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐶 𝐿 𝑋 ) ) |
35 |
34 29
|
elind |
⊢ ( 𝜑 → 𝑋 ∈ ( ( 𝐶 𝐿 𝑋 ) ∩ 𝐴 ) ) |
36 |
1 3 4 5 7 12 32
|
tglinerflx1 |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐶 𝐿 𝑋 ) ) |
37 |
17
|
necomd |
⊢ ( 𝜑 → 𝐹 ≠ 𝐸 ) |
38 |
1 3 4 5 10 9 13 37 18
|
btwnlng3 |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝐹 𝐿 𝐸 ) ) |
39 |
1 3 4 5 9 10 13 17 38
|
lncom |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝐸 𝐿 𝐹 ) ) |
40 |
39 16
|
eleqtrrd |
⊢ ( 𝜑 → 𝑌 ∈ 𝐴 ) |
41 |
|
eqid |
⊢ ( pInvG ‘ 𝐺 ) = ( pInvG ‘ 𝐺 ) |
42 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → 𝐺 ∈ TarskiG ) |
43 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → 𝐸 ∈ 𝑃 ) |
44 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → 𝑌 ∈ 𝑃 ) |
45 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → 𝑅 ∈ 𝑃 ) |
46 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → 𝐶 ∈ 𝑃 ) |
47 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → 𝐶 = 𝐶 ) |
48 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → 𝑌 = 𝑋 ) |
49 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → 𝐸 = 𝐸 ) |
50 |
47 48 49
|
s3eqd |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → ⟨“ 𝐶 𝑌 𝐸 ”⟩ = ⟨“ 𝐶 𝑋 𝐸 ”⟩ ) |
51 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → 𝑋 ∈ 𝑃 ) |
52 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → 𝑍 ∈ 𝑃 ) |
53 |
|
eqid |
⊢ ( ( pInvG ‘ 𝐺 ) ‘ 𝑍 ) = ( ( pInvG ‘ 𝐺 ) ‘ 𝑍 ) |
54 |
1 2 3 4 41 5 14 53 23
|
mircl |
⊢ ( 𝜑 → ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑍 ) ‘ 𝑄 ) ∈ 𝑃 ) |
55 |
1 2 3 5 9 13 9 7 19
|
tgcgrcomlr |
⊢ ( 𝜑 → ( 𝑌 − 𝐸 ) = ( 𝐶 − 𝐸 ) ) |
56 |
25 55
|
eqtr2d |
⊢ ( 𝜑 → ( 𝐶 − 𝐸 ) = ( 𝑌 − 𝑄 ) ) |
57 |
1 3 4 5 9 10 17
|
tglinerflx1 |
⊢ ( 𝜑 → 𝐸 ∈ ( 𝐸 𝐿 𝐹 ) ) |
58 |
57 16
|
eleqtrrd |
⊢ ( 𝜑 → 𝐸 ∈ 𝐴 ) |
59 |
|
nelne2 |
⊢ ( ( 𝐸 ∈ 𝐴 ∧ ¬ 𝐶 ∈ 𝐴 ) → 𝐸 ≠ 𝐶 ) |
60 |
58 8 59
|
syl2anc |
⊢ ( 𝜑 → 𝐸 ≠ 𝐶 ) |
61 |
60
|
necomd |
⊢ ( 𝜑 → 𝐶 ≠ 𝐸 ) |
62 |
1 2 3 5 7 9 13 23 56 61
|
tgcgrneq |
⊢ ( 𝜑 → 𝑌 ≠ 𝑄 ) |
63 |
62
|
necomd |
⊢ ( 𝜑 → 𝑄 ≠ 𝑌 ) |
64 |
|
nelne2 |
⊢ ( ( 𝑌 ∈ 𝐴 ∧ ¬ 𝐶 ∈ 𝐴 ) → 𝑌 ≠ 𝐶 ) |
65 |
40 8 64
|
syl2anc |
⊢ ( 𝜑 → 𝑌 ≠ 𝐶 ) |
66 |
65
|
necomd |
⊢ ( 𝜑 → 𝐶 ≠ 𝑌 ) |
67 |
20 66
|
eqnetrrd |
⊢ ( 𝜑 → ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑅 ) ‘ 𝑌 ) ≠ 𝑌 ) |
68 |
|
eqid |
⊢ ( ( pInvG ‘ 𝐺 ) ‘ 𝑅 ) = ( ( pInvG ‘ 𝐺 ) ‘ 𝑅 ) |
69 |
1 2 3 4 41 5 11 68 13
|
mirinv |
⊢ ( 𝜑 → ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑅 ) ‘ 𝑌 ) = 𝑌 ↔ 𝑅 = 𝑌 ) ) |
70 |
69
|
necon3bid |
⊢ ( 𝜑 → ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑅 ) ‘ 𝑌 ) ≠ 𝑌 ↔ 𝑅 ≠ 𝑌 ) ) |
71 |
67 70
|
mpbid |
⊢ ( 𝜑 → 𝑅 ≠ 𝑌 ) |
72 |
1 2 3 4 41 5 11 68 13
|
mirbtwn |
⊢ ( 𝜑 → 𝑅 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑅 ) ‘ 𝑌 ) 𝐼 𝑌 ) ) |
73 |
20
|
oveq1d |
⊢ ( 𝜑 → ( 𝐶 𝐼 𝑌 ) = ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑅 ) ‘ 𝑌 ) 𝐼 𝑌 ) ) |
74 |
72 73
|
eleqtrrd |
⊢ ( 𝜑 → 𝑅 ∈ ( 𝐶 𝐼 𝑌 ) ) |
75 |
1 2 3 5 7 11 13 23 71 74 24
|
tgbtwnouttr2 |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝐶 𝐼 𝑄 ) ) |
76 |
1 2 3 5 7 13 23 75
|
tgbtwncom |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑄 𝐼 𝐶 ) ) |
77 |
|
eqid |
⊢ ( cgrG ‘ 𝐺 ) = ( cgrG ‘ 𝐺 ) |
78 |
20
|
oveq2d |
⊢ ( 𝜑 → ( 𝐸 − 𝐶 ) = ( 𝐸 − ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑅 ) ‘ 𝑌 ) ) ) |
79 |
19 78
|
eqtrd |
⊢ ( 𝜑 → ( 𝐸 − 𝑌 ) = ( 𝐸 − ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑅 ) ‘ 𝑌 ) ) ) |
80 |
1 2 3 4 41 5 9 11 13
|
israg |
⊢ ( 𝜑 → ( ⟨“ 𝐸 𝑅 𝑌 ”⟩ ∈ ( ∟G ‘ 𝐺 ) ↔ ( 𝐸 − 𝑌 ) = ( 𝐸 − ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑅 ) ‘ 𝑌 ) ) ) ) |
81 |
79 80
|
mpbird |
⊢ ( 𝜑 → ⟨“ 𝐸 𝑅 𝑌 ”⟩ ∈ ( ∟G ‘ 𝐺 ) ) |
82 |
1 2 3 5 11 13 23 24
|
tgbtwncom |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑄 𝐼 𝑅 ) ) |
83 |
1 2 3 5 13 23 13 9 25
|
tgcgrcomlr |
⊢ ( 𝜑 → ( 𝑄 − 𝑌 ) = ( 𝐸 − 𝑌 ) ) |
84 |
22
|
eqcomd |
⊢ ( 𝜑 → ( 𝑌 − 𝑅 ) = ( 𝑌 − 𝑍 ) ) |
85 |
1 2 3 5 23 9
|
axtgcgrrflx |
⊢ ( 𝜑 → ( 𝑄 − 𝐸 ) = ( 𝐸 − 𝑄 ) ) |
86 |
25
|
eqcomd |
⊢ ( 𝜑 → ( 𝑌 − 𝐸 ) = ( 𝑌 − 𝑄 ) ) |
87 |
1 2 3 5 23 13 11 9 13 14 9 23 63 82 21 83 84 85 86
|
axtg5seg |
⊢ ( 𝜑 → ( 𝑅 − 𝐸 ) = ( 𝑍 − 𝑄 ) ) |
88 |
1 2 3 5 11 9 14 23 87
|
tgcgrcomlr |
⊢ ( 𝜑 → ( 𝐸 − 𝑅 ) = ( 𝑄 − 𝑍 ) ) |
89 |
1 2 3 5 13 11 13 14 84
|
tgcgrcomlr |
⊢ ( 𝜑 → ( 𝑅 − 𝑌 ) = ( 𝑍 − 𝑌 ) ) |
90 |
1 2 77 5 9 11 13 23 14 13 88 89 86
|
trgcgr |
⊢ ( 𝜑 → ⟨“ 𝐸 𝑅 𝑌 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑄 𝑍 𝑌 ”⟩ ) |
91 |
1 2 3 4 41 5 9 11 13 77 23 14 13 81 90
|
ragcgr |
⊢ ( 𝜑 → ⟨“ 𝑄 𝑍 𝑌 ”⟩ ∈ ( ∟G ‘ 𝐺 ) ) |
92 |
1 2 3 4 41 5 23 14 13 91
|
ragcom |
⊢ ( 𝜑 → ⟨“ 𝑌 𝑍 𝑄 ”⟩ ∈ ( ∟G ‘ 𝐺 ) ) |
93 |
1 2 3 4 41 5 13 14 23
|
israg |
⊢ ( 𝜑 → ( ⟨“ 𝑌 𝑍 𝑄 ”⟩ ∈ ( ∟G ‘ 𝐺 ) ↔ ( 𝑌 − 𝑄 ) = ( 𝑌 − ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑍 ) ‘ 𝑄 ) ) ) ) |
94 |
92 93
|
mpbid |
⊢ ( 𝜑 → ( 𝑌 − 𝑄 ) = ( 𝑌 − ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑍 ) ‘ 𝑄 ) ) ) |
95 |
1 2 3 5 13 23 13 54 94
|
tgcgrcomlr |
⊢ ( 𝜑 → ( 𝑄 − 𝑌 ) = ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑍 ) ‘ 𝑄 ) − 𝑌 ) ) |
96 |
27
|
eqcomd |
⊢ ( 𝜑 → ( 𝑌 − 𝐶 ) = ( 𝑌 − 𝐷 ) ) |
97 |
1 2 3 4 41 5 14 53 23
|
mircgr |
⊢ ( 𝜑 → ( 𝑍 − ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑍 ) ‘ 𝑄 ) ) = ( 𝑍 − 𝑄 ) ) |
98 |
97
|
eqcomd |
⊢ ( 𝜑 → ( 𝑍 − 𝑄 ) = ( 𝑍 − ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑍 ) ‘ 𝑄 ) ) ) |
99 |
1 2 3 5 14 23 14 54 98
|
tgcgrcomlr |
⊢ ( 𝜑 → ( 𝑄 − 𝑍 ) = ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑍 ) ‘ 𝑄 ) − 𝑍 ) ) |
100 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑌 − 𝑍 ) = ( 𝑌 − 𝑍 ) ) |
101 |
1 2 3 5 23 13 7 54 13 15 14 14 63 76 26 95 96 99 100
|
axtg5seg |
⊢ ( 𝜑 → ( 𝐶 − 𝑍 ) = ( 𝐷 − 𝑍 ) ) |
102 |
1 2 3 5 7 14 15 14 101
|
tgcgrcomlr |
⊢ ( 𝜑 → ( 𝑍 − 𝐶 ) = ( 𝑍 − 𝐷 ) ) |
103 |
28
|
oveq2d |
⊢ ( 𝜑 → ( 𝑍 − 𝐷 ) = ( 𝑍 − ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑋 ) ‘ 𝐶 ) ) ) |
104 |
102 103
|
eqtrd |
⊢ ( 𝜑 → ( 𝑍 − 𝐶 ) = ( 𝑍 − ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑋 ) ‘ 𝐶 ) ) ) |
105 |
1 2 3 4 41 5 14 12 7
|
israg |
⊢ ( 𝜑 → ( ⟨“ 𝑍 𝑋 𝐶 ”⟩ ∈ ( ∟G ‘ 𝐺 ) ↔ ( 𝑍 − 𝐶 ) = ( 𝑍 − ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑋 ) ‘ 𝐶 ) ) ) ) |
106 |
104 105
|
mpbird |
⊢ ( 𝜑 → ⟨“ 𝑍 𝑋 𝐶 ”⟩ ∈ ( ∟G ‘ 𝐺 ) ) |
107 |
106
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → ⟨“ 𝑍 𝑋 𝐶 ”⟩ ∈ ( ∟G ‘ 𝐺 ) ) |
108 |
71
|
necomd |
⊢ ( 𝜑 → 𝑌 ≠ 𝑅 ) |
109 |
1 2 3 5 13 11 13 14 84 108
|
tgcgrneq |
⊢ ( 𝜑 → 𝑌 ≠ 𝑍 ) |
110 |
109
|
necomd |
⊢ ( 𝜑 → 𝑍 ≠ 𝑌 ) |
111 |
110
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → 𝑍 ≠ 𝑌 ) |
112 |
111 48
|
neeqtrd |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → 𝑍 ≠ 𝑋 ) |
113 |
19
|
eqcomd |
⊢ ( 𝜑 → ( 𝐸 − 𝐶 ) = ( 𝐸 − 𝑌 ) ) |
114 |
113
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → ( 𝐸 − 𝐶 ) = ( 𝐸 − 𝑌 ) ) |
115 |
60
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → 𝐸 ≠ 𝐶 ) |
116 |
1 2 3 42 43 46 43 44 114 115
|
tgcgrneq |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → 𝐸 ≠ 𝑌 ) |
117 |
116
|
necomd |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → 𝑌 ≠ 𝐸 ) |
118 |
1 2 3 5 9 7 9 13 113 60
|
tgcgrneq |
⊢ ( 𝜑 → 𝐸 ≠ 𝑌 ) |
119 |
1 3 4 5 9 13 14 118 21
|
btwnlng3 |
⊢ ( 𝜑 → 𝑍 ∈ ( 𝐸 𝐿 𝑌 ) ) |
120 |
119
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → 𝑍 ∈ ( 𝐸 𝐿 𝑌 ) ) |
121 |
1 3 4 42 44 43 52 117 120
|
lncom |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → 𝑍 ∈ ( 𝑌 𝐿 𝐸 ) ) |
122 |
48
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → ( 𝑌 𝐿 𝐸 ) = ( 𝑋 𝐿 𝐸 ) ) |
123 |
121 122
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → 𝑍 ∈ ( 𝑋 𝐿 𝐸 ) ) |
124 |
123
|
orcd |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → ( 𝑍 ∈ ( 𝑋 𝐿 𝐸 ) ∨ 𝑋 = 𝐸 ) ) |
125 |
1 2 3 4 41 42 52 51 46 43 107 112 124
|
ragcol |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → ⟨“ 𝐸 𝑋 𝐶 ”⟩ ∈ ( ∟G ‘ 𝐺 ) ) |
126 |
1 2 3 4 41 42 43 51 46 125
|
ragcom |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → ⟨“ 𝐶 𝑋 𝐸 ”⟩ ∈ ( ∟G ‘ 𝐺 ) ) |
127 |
50 126
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → ⟨“ 𝐶 𝑌 𝐸 ”⟩ ∈ ( ∟G ‘ 𝐺 ) ) |
128 |
66
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → 𝐶 ≠ 𝑌 ) |
129 |
1 2 3 5 7 11 13 74
|
tgbtwncom |
⊢ ( 𝜑 → 𝑅 ∈ ( 𝑌 𝐼 𝐶 ) ) |
130 |
1 4 3 5 13 11 7 129
|
btwncolg3 |
⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝑌 𝐿 𝑅 ) ∨ 𝑌 = 𝑅 ) ) |
131 |
130
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → ( 𝐶 ∈ ( 𝑌 𝐿 𝑅 ) ∨ 𝑌 = 𝑅 ) ) |
132 |
1 2 3 4 41 42 46 44 43 45 127 128 131
|
ragcol |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → ⟨“ 𝑅 𝑌 𝐸 ”⟩ ∈ ( ∟G ‘ 𝐺 ) ) |
133 |
1 2 3 4 41 42 45 44 43 132
|
ragcom |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → ⟨“ 𝐸 𝑌 𝑅 ”⟩ ∈ ( ∟G ‘ 𝐺 ) ) |
134 |
81
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → ⟨“ 𝐸 𝑅 𝑌 ”⟩ ∈ ( ∟G ‘ 𝐺 ) ) |
135 |
1 2 3 4 41 42 43 44 45 133 134
|
ragflat |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → 𝑌 = 𝑅 ) |
136 |
108
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → 𝑌 ≠ 𝑅 ) |
137 |
136
|
neneqd |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → ¬ 𝑌 = 𝑅 ) |
138 |
135 137
|
pm2.65da |
⊢ ( 𝜑 → ¬ 𝑌 = 𝑋 ) |
139 |
138
|
neqned |
⊢ ( 𝜑 → 𝑌 ≠ 𝑋 ) |
140 |
28
|
oveq2d |
⊢ ( 𝜑 → ( 𝑌 − 𝐷 ) = ( 𝑌 − ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑋 ) ‘ 𝐶 ) ) ) |
141 |
96 140
|
eqtrd |
⊢ ( 𝜑 → ( 𝑌 − 𝐶 ) = ( 𝑌 − ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑋 ) ‘ 𝐶 ) ) ) |
142 |
1 2 3 4 41 5 13 12 7
|
israg |
⊢ ( 𝜑 → ( ⟨“ 𝑌 𝑋 𝐶 ”⟩ ∈ ( ∟G ‘ 𝐺 ) ↔ ( 𝑌 − 𝐶 ) = ( 𝑌 − ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑋 ) ‘ 𝐶 ) ) ) ) |
143 |
141 142
|
mpbird |
⊢ ( 𝜑 → ⟨“ 𝑌 𝑋 𝐶 ”⟩ ∈ ( ∟G ‘ 𝐺 ) ) |
144 |
1 2 3 4 41 5 13 12 7 143
|
ragcom |
⊢ ( 𝜑 → ⟨“ 𝐶 𝑋 𝑌 ”⟩ ∈ ( ∟G ‘ 𝐺 ) ) |
145 |
1 2 3 4 5 33 6 35 36 40 32 139 144
|
ragperp |
⊢ ( 𝜑 → ( 𝐶 𝐿 𝑋 ) ( ⟂G ‘ 𝐺 ) 𝐴 ) |