Description: Lemma for footex . (Contributed by Thierry Arnoux, 19-Oct-2019) (Revised by Thierry Arnoux, 1-Jul-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isperp.p | ⊢ 𝑃 = ( Base ‘ 𝐺 ) | |
| isperp.d | ⊢ − = ( dist ‘ 𝐺 ) | ||
| isperp.i | ⊢ 𝐼 = ( Itv ‘ 𝐺 ) | ||
| isperp.l | ⊢ 𝐿 = ( LineG ‘ 𝐺 ) | ||
| isperp.g | ⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) | ||
| isperp.a | ⊢ ( 𝜑 → 𝐴 ∈ ran 𝐿 ) | ||
| foot.x | ⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) | ||
| foot.y | ⊢ ( 𝜑 → ¬ 𝐶 ∈ 𝐴 ) | ||
| footexlem.e | ⊢ ( 𝜑 → 𝐸 ∈ 𝑃 ) | ||
| footexlem.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑃 ) | ||
| footexlem.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑃 ) | ||
| footexlem.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑃 ) | ||
| footexlem.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑃 ) | ||
| footexlem.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑃 ) | ||
| footexlem.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) | ||
| footexlem.1 | ⊢ ( 𝜑 → 𝐴 = ( 𝐸 𝐿 𝐹 ) ) | ||
| footexlem.2 | ⊢ ( 𝜑 → 𝐸 ≠ 𝐹 ) | ||
| footexlem.3 | ⊢ ( 𝜑 → 𝐸 ∈ ( 𝐹 𝐼 𝑌 ) ) | ||
| footexlem.4 | ⊢ ( 𝜑 → ( 𝐸 − 𝑌 ) = ( 𝐸 − 𝐶 ) ) | ||
| footexlem.5 | ⊢ ( 𝜑 → 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑅 ) ‘ 𝑌 ) ) | ||
| footexlem.6 | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝐸 𝐼 𝑍 ) ) | ||
| footexlem.7 | ⊢ ( 𝜑 → ( 𝑌 − 𝑍 ) = ( 𝑌 − 𝑅 ) ) | ||
| footexlem.q | ⊢ ( 𝜑 → 𝑄 ∈ 𝑃 ) | ||
| footexlem.8 | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝑅 𝐼 𝑄 ) ) | ||
| footexlem.9 | ⊢ ( 𝜑 → ( 𝑌 − 𝑄 ) = ( 𝑌 − 𝐸 ) ) | ||
| footexlem.10 | ⊢ ( 𝜑 → 𝑌 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑍 ) ‘ 𝑄 ) 𝐼 𝐷 ) ) | ||
| footexlem.11 | ⊢ ( 𝜑 → ( 𝑌 − 𝐷 ) = ( 𝑌 − 𝐶 ) ) | ||
| footexlem.12 | ⊢ ( 𝜑 → 𝐷 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑋 ) ‘ 𝐶 ) ) | ||
| Assertion | footexlem2 | ⊢ ( 𝜑 → ( 𝐶 𝐿 𝑋 ) ( ⟂G ‘ 𝐺 ) 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isperp.p | ⊢ 𝑃 = ( Base ‘ 𝐺 ) | |
| 2 | isperp.d | ⊢ − = ( dist ‘ 𝐺 ) | |
| 3 | isperp.i | ⊢ 𝐼 = ( Itv ‘ 𝐺 ) | |
| 4 | isperp.l | ⊢ 𝐿 = ( LineG ‘ 𝐺 ) | |
| 5 | isperp.g | ⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) | |
| 6 | isperp.a | ⊢ ( 𝜑 → 𝐴 ∈ ran 𝐿 ) | |
| 7 | foot.x | ⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) | |
| 8 | foot.y | ⊢ ( 𝜑 → ¬ 𝐶 ∈ 𝐴 ) | |
| 9 | footexlem.e | ⊢ ( 𝜑 → 𝐸 ∈ 𝑃 ) | |
| 10 | footexlem.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑃 ) | |
| 11 | footexlem.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑃 ) | |
| 12 | footexlem.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑃 ) | |
| 13 | footexlem.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑃 ) | |
| 14 | footexlem.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑃 ) | |
| 15 | footexlem.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) | |
| 16 | footexlem.1 | ⊢ ( 𝜑 → 𝐴 = ( 𝐸 𝐿 𝐹 ) ) | |
| 17 | footexlem.2 | ⊢ ( 𝜑 → 𝐸 ≠ 𝐹 ) | |
| 18 | footexlem.3 | ⊢ ( 𝜑 → 𝐸 ∈ ( 𝐹 𝐼 𝑌 ) ) | |
| 19 | footexlem.4 | ⊢ ( 𝜑 → ( 𝐸 − 𝑌 ) = ( 𝐸 − 𝐶 ) ) | |
| 20 | footexlem.5 | ⊢ ( 𝜑 → 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑅 ) ‘ 𝑌 ) ) | |
| 21 | footexlem.6 | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝐸 𝐼 𝑍 ) ) | |
| 22 | footexlem.7 | ⊢ ( 𝜑 → ( 𝑌 − 𝑍 ) = ( 𝑌 − 𝑅 ) ) | |
| 23 | footexlem.q | ⊢ ( 𝜑 → 𝑄 ∈ 𝑃 ) | |
| 24 | footexlem.8 | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝑅 𝐼 𝑄 ) ) | |
| 25 | footexlem.9 | ⊢ ( 𝜑 → ( 𝑌 − 𝑄 ) = ( 𝑌 − 𝐸 ) ) | |
| 26 | footexlem.10 | ⊢ ( 𝜑 → 𝑌 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑍 ) ‘ 𝑄 ) 𝐼 𝐷 ) ) | |
| 27 | footexlem.11 | ⊢ ( 𝜑 → ( 𝑌 − 𝐷 ) = ( 𝑌 − 𝐶 ) ) | |
| 28 | footexlem.12 | ⊢ ( 𝜑 → 𝐷 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑋 ) ‘ 𝐶 ) ) | |
| 29 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | footexlem1 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
| 30 | nelne2 | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ ¬ 𝐶 ∈ 𝐴 ) → 𝑋 ≠ 𝐶 ) | |
| 31 | 29 8 30 | syl2anc | ⊢ ( 𝜑 → 𝑋 ≠ 𝐶 ) |
| 32 | 31 | necomd | ⊢ ( 𝜑 → 𝐶 ≠ 𝑋 ) |
| 33 | 1 3 4 5 7 12 32 | tgelrnln | ⊢ ( 𝜑 → ( 𝐶 𝐿 𝑋 ) ∈ ran 𝐿 ) |
| 34 | 1 3 4 5 7 12 32 | tglinerflx2 | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐶 𝐿 𝑋 ) ) |
| 35 | 34 29 | elind | ⊢ ( 𝜑 → 𝑋 ∈ ( ( 𝐶 𝐿 𝑋 ) ∩ 𝐴 ) ) |
| 36 | 1 3 4 5 7 12 32 | tglinerflx1 | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐶 𝐿 𝑋 ) ) |
| 37 | 17 | necomd | ⊢ ( 𝜑 → 𝐹 ≠ 𝐸 ) |
| 38 | 1 3 4 5 10 9 13 37 18 | btwnlng3 | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝐹 𝐿 𝐸 ) ) |
| 39 | 1 3 4 5 9 10 13 17 38 | lncom | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝐸 𝐿 𝐹 ) ) |
| 40 | 39 16 | eleqtrrd | ⊢ ( 𝜑 → 𝑌 ∈ 𝐴 ) |
| 41 | eqid | ⊢ ( pInvG ‘ 𝐺 ) = ( pInvG ‘ 𝐺 ) | |
| 42 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → 𝐺 ∈ TarskiG ) |
| 43 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → 𝐸 ∈ 𝑃 ) |
| 44 | 13 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → 𝑌 ∈ 𝑃 ) |
| 45 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → 𝑅 ∈ 𝑃 ) |
| 46 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → 𝐶 ∈ 𝑃 ) |
| 47 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → 𝐶 = 𝐶 ) | |
| 48 | simpr | ⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → 𝑌 = 𝑋 ) | |
| 49 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → 𝐸 = 𝐸 ) | |
| 50 | 47 48 49 | s3eqd | ⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → 〈“ 𝐶 𝑌 𝐸 ”〉 = 〈“ 𝐶 𝑋 𝐸 ”〉 ) |
| 51 | 12 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → 𝑋 ∈ 𝑃 ) |
| 52 | 14 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → 𝑍 ∈ 𝑃 ) |
| 53 | eqid | ⊢ ( ( pInvG ‘ 𝐺 ) ‘ 𝑍 ) = ( ( pInvG ‘ 𝐺 ) ‘ 𝑍 ) | |
| 54 | 1 2 3 4 41 5 14 53 23 | mircl | ⊢ ( 𝜑 → ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑍 ) ‘ 𝑄 ) ∈ 𝑃 ) |
| 55 | 1 2 3 5 9 13 9 7 19 | tgcgrcomlr | ⊢ ( 𝜑 → ( 𝑌 − 𝐸 ) = ( 𝐶 − 𝐸 ) ) |
| 56 | 25 55 | eqtr2d | ⊢ ( 𝜑 → ( 𝐶 − 𝐸 ) = ( 𝑌 − 𝑄 ) ) |
| 57 | 1 3 4 5 9 10 17 | tglinerflx1 | ⊢ ( 𝜑 → 𝐸 ∈ ( 𝐸 𝐿 𝐹 ) ) |
| 58 | 57 16 | eleqtrrd | ⊢ ( 𝜑 → 𝐸 ∈ 𝐴 ) |
| 59 | nelne2 | ⊢ ( ( 𝐸 ∈ 𝐴 ∧ ¬ 𝐶 ∈ 𝐴 ) → 𝐸 ≠ 𝐶 ) | |
| 60 | 58 8 59 | syl2anc | ⊢ ( 𝜑 → 𝐸 ≠ 𝐶 ) |
| 61 | 60 | necomd | ⊢ ( 𝜑 → 𝐶 ≠ 𝐸 ) |
| 62 | 1 2 3 5 7 9 13 23 56 61 | tgcgrneq | ⊢ ( 𝜑 → 𝑌 ≠ 𝑄 ) |
| 63 | 62 | necomd | ⊢ ( 𝜑 → 𝑄 ≠ 𝑌 ) |
| 64 | nelne2 | ⊢ ( ( 𝑌 ∈ 𝐴 ∧ ¬ 𝐶 ∈ 𝐴 ) → 𝑌 ≠ 𝐶 ) | |
| 65 | 40 8 64 | syl2anc | ⊢ ( 𝜑 → 𝑌 ≠ 𝐶 ) |
| 66 | 65 | necomd | ⊢ ( 𝜑 → 𝐶 ≠ 𝑌 ) |
| 67 | 20 66 | eqnetrrd | ⊢ ( 𝜑 → ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑅 ) ‘ 𝑌 ) ≠ 𝑌 ) |
| 68 | eqid | ⊢ ( ( pInvG ‘ 𝐺 ) ‘ 𝑅 ) = ( ( pInvG ‘ 𝐺 ) ‘ 𝑅 ) | |
| 69 | 1 2 3 4 41 5 11 68 13 | mirinv | ⊢ ( 𝜑 → ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑅 ) ‘ 𝑌 ) = 𝑌 ↔ 𝑅 = 𝑌 ) ) |
| 70 | 69 | necon3bid | ⊢ ( 𝜑 → ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑅 ) ‘ 𝑌 ) ≠ 𝑌 ↔ 𝑅 ≠ 𝑌 ) ) |
| 71 | 67 70 | mpbid | ⊢ ( 𝜑 → 𝑅 ≠ 𝑌 ) |
| 72 | 1 2 3 4 41 5 11 68 13 | mirbtwn | ⊢ ( 𝜑 → 𝑅 ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑅 ) ‘ 𝑌 ) 𝐼 𝑌 ) ) |
| 73 | 20 | oveq1d | ⊢ ( 𝜑 → ( 𝐶 𝐼 𝑌 ) = ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑅 ) ‘ 𝑌 ) 𝐼 𝑌 ) ) |
| 74 | 72 73 | eleqtrrd | ⊢ ( 𝜑 → 𝑅 ∈ ( 𝐶 𝐼 𝑌 ) ) |
| 75 | 1 2 3 5 7 11 13 23 71 74 24 | tgbtwnouttr2 | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝐶 𝐼 𝑄 ) ) |
| 76 | 1 2 3 5 7 13 23 75 | tgbtwncom | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝑄 𝐼 𝐶 ) ) |
| 77 | eqid | ⊢ ( cgrG ‘ 𝐺 ) = ( cgrG ‘ 𝐺 ) | |
| 78 | 20 | oveq2d | ⊢ ( 𝜑 → ( 𝐸 − 𝐶 ) = ( 𝐸 − ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑅 ) ‘ 𝑌 ) ) ) |
| 79 | 19 78 | eqtrd | ⊢ ( 𝜑 → ( 𝐸 − 𝑌 ) = ( 𝐸 − ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑅 ) ‘ 𝑌 ) ) ) |
| 80 | 1 2 3 4 41 5 9 11 13 | israg | ⊢ ( 𝜑 → ( 〈“ 𝐸 𝑅 𝑌 ”〉 ∈ ( ∟G ‘ 𝐺 ) ↔ ( 𝐸 − 𝑌 ) = ( 𝐸 − ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑅 ) ‘ 𝑌 ) ) ) ) |
| 81 | 79 80 | mpbird | ⊢ ( 𝜑 → 〈“ 𝐸 𝑅 𝑌 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 82 | 1 2 3 5 11 13 23 24 | tgbtwncom | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝑄 𝐼 𝑅 ) ) |
| 83 | 1 2 3 5 13 23 13 9 25 | tgcgrcomlr | ⊢ ( 𝜑 → ( 𝑄 − 𝑌 ) = ( 𝐸 − 𝑌 ) ) |
| 84 | 22 | eqcomd | ⊢ ( 𝜑 → ( 𝑌 − 𝑅 ) = ( 𝑌 − 𝑍 ) ) |
| 85 | 1 2 3 5 23 9 | axtgcgrrflx | ⊢ ( 𝜑 → ( 𝑄 − 𝐸 ) = ( 𝐸 − 𝑄 ) ) |
| 86 | 25 | eqcomd | ⊢ ( 𝜑 → ( 𝑌 − 𝐸 ) = ( 𝑌 − 𝑄 ) ) |
| 87 | 1 2 3 5 23 13 11 9 13 14 9 23 63 82 21 83 84 85 86 | axtg5seg | ⊢ ( 𝜑 → ( 𝑅 − 𝐸 ) = ( 𝑍 − 𝑄 ) ) |
| 88 | 1 2 3 5 11 9 14 23 87 | tgcgrcomlr | ⊢ ( 𝜑 → ( 𝐸 − 𝑅 ) = ( 𝑄 − 𝑍 ) ) |
| 89 | 1 2 3 5 13 11 13 14 84 | tgcgrcomlr | ⊢ ( 𝜑 → ( 𝑅 − 𝑌 ) = ( 𝑍 − 𝑌 ) ) |
| 90 | 1 2 77 5 9 11 13 23 14 13 88 89 86 | trgcgr | ⊢ ( 𝜑 → 〈“ 𝐸 𝑅 𝑌 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑄 𝑍 𝑌 ”〉 ) |
| 91 | 1 2 3 4 41 5 9 11 13 77 23 14 13 81 90 | ragcgr | ⊢ ( 𝜑 → 〈“ 𝑄 𝑍 𝑌 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 92 | 1 2 3 4 41 5 23 14 13 91 | ragcom | ⊢ ( 𝜑 → 〈“ 𝑌 𝑍 𝑄 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 93 | 1 2 3 4 41 5 13 14 23 | israg | ⊢ ( 𝜑 → ( 〈“ 𝑌 𝑍 𝑄 ”〉 ∈ ( ∟G ‘ 𝐺 ) ↔ ( 𝑌 − 𝑄 ) = ( 𝑌 − ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑍 ) ‘ 𝑄 ) ) ) ) |
| 94 | 92 93 | mpbid | ⊢ ( 𝜑 → ( 𝑌 − 𝑄 ) = ( 𝑌 − ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑍 ) ‘ 𝑄 ) ) ) |
| 95 | 1 2 3 5 13 23 13 54 94 | tgcgrcomlr | ⊢ ( 𝜑 → ( 𝑄 − 𝑌 ) = ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑍 ) ‘ 𝑄 ) − 𝑌 ) ) |
| 96 | 27 | eqcomd | ⊢ ( 𝜑 → ( 𝑌 − 𝐶 ) = ( 𝑌 − 𝐷 ) ) |
| 97 | 1 2 3 4 41 5 14 53 23 | mircgr | ⊢ ( 𝜑 → ( 𝑍 − ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑍 ) ‘ 𝑄 ) ) = ( 𝑍 − 𝑄 ) ) |
| 98 | 97 | eqcomd | ⊢ ( 𝜑 → ( 𝑍 − 𝑄 ) = ( 𝑍 − ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑍 ) ‘ 𝑄 ) ) ) |
| 99 | 1 2 3 5 14 23 14 54 98 | tgcgrcomlr | ⊢ ( 𝜑 → ( 𝑄 − 𝑍 ) = ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑍 ) ‘ 𝑄 ) − 𝑍 ) ) |
| 100 | eqidd | ⊢ ( 𝜑 → ( 𝑌 − 𝑍 ) = ( 𝑌 − 𝑍 ) ) | |
| 101 | 1 2 3 5 23 13 7 54 13 15 14 14 63 76 26 95 96 99 100 | axtg5seg | ⊢ ( 𝜑 → ( 𝐶 − 𝑍 ) = ( 𝐷 − 𝑍 ) ) |
| 102 | 1 2 3 5 7 14 15 14 101 | tgcgrcomlr | ⊢ ( 𝜑 → ( 𝑍 − 𝐶 ) = ( 𝑍 − 𝐷 ) ) |
| 103 | 28 | oveq2d | ⊢ ( 𝜑 → ( 𝑍 − 𝐷 ) = ( 𝑍 − ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑋 ) ‘ 𝐶 ) ) ) |
| 104 | 102 103 | eqtrd | ⊢ ( 𝜑 → ( 𝑍 − 𝐶 ) = ( 𝑍 − ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑋 ) ‘ 𝐶 ) ) ) |
| 105 | 1 2 3 4 41 5 14 12 7 | israg | ⊢ ( 𝜑 → ( 〈“ 𝑍 𝑋 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ↔ ( 𝑍 − 𝐶 ) = ( 𝑍 − ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑋 ) ‘ 𝐶 ) ) ) ) |
| 106 | 104 105 | mpbird | ⊢ ( 𝜑 → 〈“ 𝑍 𝑋 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 107 | 106 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → 〈“ 𝑍 𝑋 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 108 | 71 | necomd | ⊢ ( 𝜑 → 𝑌 ≠ 𝑅 ) |
| 109 | 1 2 3 5 13 11 13 14 84 108 | tgcgrneq | ⊢ ( 𝜑 → 𝑌 ≠ 𝑍 ) |
| 110 | 109 | necomd | ⊢ ( 𝜑 → 𝑍 ≠ 𝑌 ) |
| 111 | 110 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → 𝑍 ≠ 𝑌 ) |
| 112 | 111 48 | neeqtrd | ⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → 𝑍 ≠ 𝑋 ) |
| 113 | 19 | eqcomd | ⊢ ( 𝜑 → ( 𝐸 − 𝐶 ) = ( 𝐸 − 𝑌 ) ) |
| 114 | 113 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → ( 𝐸 − 𝐶 ) = ( 𝐸 − 𝑌 ) ) |
| 115 | 60 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → 𝐸 ≠ 𝐶 ) |
| 116 | 1 2 3 42 43 46 43 44 114 115 | tgcgrneq | ⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → 𝐸 ≠ 𝑌 ) |
| 117 | 116 | necomd | ⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → 𝑌 ≠ 𝐸 ) |
| 118 | 1 2 3 5 9 7 9 13 113 60 | tgcgrneq | ⊢ ( 𝜑 → 𝐸 ≠ 𝑌 ) |
| 119 | 1 3 4 5 9 13 14 118 21 | btwnlng3 | ⊢ ( 𝜑 → 𝑍 ∈ ( 𝐸 𝐿 𝑌 ) ) |
| 120 | 119 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → 𝑍 ∈ ( 𝐸 𝐿 𝑌 ) ) |
| 121 | 1 3 4 42 44 43 52 117 120 | lncom | ⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → 𝑍 ∈ ( 𝑌 𝐿 𝐸 ) ) |
| 122 | 48 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → ( 𝑌 𝐿 𝐸 ) = ( 𝑋 𝐿 𝐸 ) ) |
| 123 | 121 122 | eleqtrd | ⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → 𝑍 ∈ ( 𝑋 𝐿 𝐸 ) ) |
| 124 | 123 | orcd | ⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → ( 𝑍 ∈ ( 𝑋 𝐿 𝐸 ) ∨ 𝑋 = 𝐸 ) ) |
| 125 | 1 2 3 4 41 42 52 51 46 43 107 112 124 | ragcol | ⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → 〈“ 𝐸 𝑋 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 126 | 1 2 3 4 41 42 43 51 46 125 | ragcom | ⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → 〈“ 𝐶 𝑋 𝐸 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 127 | 50 126 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → 〈“ 𝐶 𝑌 𝐸 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 128 | 66 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → 𝐶 ≠ 𝑌 ) |
| 129 | 1 2 3 5 7 11 13 74 | tgbtwncom | ⊢ ( 𝜑 → 𝑅 ∈ ( 𝑌 𝐼 𝐶 ) ) |
| 130 | 1 4 3 5 13 11 7 129 | btwncolg3 | ⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝑌 𝐿 𝑅 ) ∨ 𝑌 = 𝑅 ) ) |
| 131 | 130 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → ( 𝐶 ∈ ( 𝑌 𝐿 𝑅 ) ∨ 𝑌 = 𝑅 ) ) |
| 132 | 1 2 3 4 41 42 46 44 43 45 127 128 131 | ragcol | ⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → 〈“ 𝑅 𝑌 𝐸 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 133 | 1 2 3 4 41 42 45 44 43 132 | ragcom | ⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → 〈“ 𝐸 𝑌 𝑅 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 134 | 81 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → 〈“ 𝐸 𝑅 𝑌 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 135 | 1 2 3 4 41 42 43 44 45 133 134 | ragflat | ⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → 𝑌 = 𝑅 ) |
| 136 | 108 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → 𝑌 ≠ 𝑅 ) |
| 137 | 136 | neneqd | ⊢ ( ( 𝜑 ∧ 𝑌 = 𝑋 ) → ¬ 𝑌 = 𝑅 ) |
| 138 | 135 137 | pm2.65da | ⊢ ( 𝜑 → ¬ 𝑌 = 𝑋 ) |
| 139 | 138 | neqned | ⊢ ( 𝜑 → 𝑌 ≠ 𝑋 ) |
| 140 | 28 | oveq2d | ⊢ ( 𝜑 → ( 𝑌 − 𝐷 ) = ( 𝑌 − ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑋 ) ‘ 𝐶 ) ) ) |
| 141 | 96 140 | eqtrd | ⊢ ( 𝜑 → ( 𝑌 − 𝐶 ) = ( 𝑌 − ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑋 ) ‘ 𝐶 ) ) ) |
| 142 | 1 2 3 4 41 5 13 12 7 | israg | ⊢ ( 𝜑 → ( 〈“ 𝑌 𝑋 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ↔ ( 𝑌 − 𝐶 ) = ( 𝑌 − ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑋 ) ‘ 𝐶 ) ) ) ) |
| 143 | 141 142 | mpbird | ⊢ ( 𝜑 → 〈“ 𝑌 𝑋 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 144 | 1 2 3 4 41 5 13 12 7 143 | ragcom | ⊢ ( 𝜑 → 〈“ 𝐶 𝑋 𝑌 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 145 | 1 2 3 4 5 33 6 35 36 40 32 139 144 | ragperp | ⊢ ( 𝜑 → ( 𝐶 𝐿 𝑋 ) ( ⟂G ‘ 𝐺 ) 𝐴 ) |