Step |
Hyp |
Ref |
Expression |
1 |
|
isperp.p |
|- P = ( Base ` G ) |
2 |
|
isperp.d |
|- .- = ( dist ` G ) |
3 |
|
isperp.i |
|- I = ( Itv ` G ) |
4 |
|
isperp.l |
|- L = ( LineG ` G ) |
5 |
|
isperp.g |
|- ( ph -> G e. TarskiG ) |
6 |
|
isperp.a |
|- ( ph -> A e. ran L ) |
7 |
|
foot.x |
|- ( ph -> C e. P ) |
8 |
|
foot.y |
|- ( ph -> -. C e. A ) |
9 |
|
footexlem.e |
|- ( ph -> E e. P ) |
10 |
|
footexlem.f |
|- ( ph -> F e. P ) |
11 |
|
footexlem.r |
|- ( ph -> R e. P ) |
12 |
|
footexlem.x |
|- ( ph -> X e. P ) |
13 |
|
footexlem.y |
|- ( ph -> Y e. P ) |
14 |
|
footexlem.z |
|- ( ph -> Z e. P ) |
15 |
|
footexlem.d |
|- ( ph -> D e. P ) |
16 |
|
footexlem.1 |
|- ( ph -> A = ( E L F ) ) |
17 |
|
footexlem.2 |
|- ( ph -> E =/= F ) |
18 |
|
footexlem.3 |
|- ( ph -> E e. ( F I Y ) ) |
19 |
|
footexlem.4 |
|- ( ph -> ( E .- Y ) = ( E .- C ) ) |
20 |
|
footexlem.5 |
|- ( ph -> C = ( ( ( pInvG ` G ) ` R ) ` Y ) ) |
21 |
|
footexlem.6 |
|- ( ph -> Y e. ( E I Z ) ) |
22 |
|
footexlem.7 |
|- ( ph -> ( Y .- Z ) = ( Y .- R ) ) |
23 |
|
footexlem.q |
|- ( ph -> Q e. P ) |
24 |
|
footexlem.8 |
|- ( ph -> Y e. ( R I Q ) ) |
25 |
|
footexlem.9 |
|- ( ph -> ( Y .- Q ) = ( Y .- E ) ) |
26 |
|
footexlem.10 |
|- ( ph -> Y e. ( ( ( ( pInvG ` G ) ` Z ) ` Q ) I D ) ) |
27 |
|
footexlem.11 |
|- ( ph -> ( Y .- D ) = ( Y .- C ) ) |
28 |
|
footexlem.12 |
|- ( ph -> D = ( ( ( pInvG ` G ) ` X ) ` C ) ) |
29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
|
footexlem1 |
|- ( ph -> X e. A ) |
30 |
|
nelne2 |
|- ( ( X e. A /\ -. C e. A ) -> X =/= C ) |
31 |
29 8 30
|
syl2anc |
|- ( ph -> X =/= C ) |
32 |
31
|
necomd |
|- ( ph -> C =/= X ) |
33 |
1 3 4 5 7 12 32
|
tgelrnln |
|- ( ph -> ( C L X ) e. ran L ) |
34 |
1 3 4 5 7 12 32
|
tglinerflx2 |
|- ( ph -> X e. ( C L X ) ) |
35 |
34 29
|
elind |
|- ( ph -> X e. ( ( C L X ) i^i A ) ) |
36 |
1 3 4 5 7 12 32
|
tglinerflx1 |
|- ( ph -> C e. ( C L X ) ) |
37 |
17
|
necomd |
|- ( ph -> F =/= E ) |
38 |
1 3 4 5 10 9 13 37 18
|
btwnlng3 |
|- ( ph -> Y e. ( F L E ) ) |
39 |
1 3 4 5 9 10 13 17 38
|
lncom |
|- ( ph -> Y e. ( E L F ) ) |
40 |
39 16
|
eleqtrrd |
|- ( ph -> Y e. A ) |
41 |
|
eqid |
|- ( pInvG ` G ) = ( pInvG ` G ) |
42 |
5
|
adantr |
|- ( ( ph /\ Y = X ) -> G e. TarskiG ) |
43 |
9
|
adantr |
|- ( ( ph /\ Y = X ) -> E e. P ) |
44 |
13
|
adantr |
|- ( ( ph /\ Y = X ) -> Y e. P ) |
45 |
11
|
adantr |
|- ( ( ph /\ Y = X ) -> R e. P ) |
46 |
7
|
adantr |
|- ( ( ph /\ Y = X ) -> C e. P ) |
47 |
|
eqidd |
|- ( ( ph /\ Y = X ) -> C = C ) |
48 |
|
simpr |
|- ( ( ph /\ Y = X ) -> Y = X ) |
49 |
|
eqidd |
|- ( ( ph /\ Y = X ) -> E = E ) |
50 |
47 48 49
|
s3eqd |
|- ( ( ph /\ Y = X ) -> <" C Y E "> = <" C X E "> ) |
51 |
12
|
adantr |
|- ( ( ph /\ Y = X ) -> X e. P ) |
52 |
14
|
adantr |
|- ( ( ph /\ Y = X ) -> Z e. P ) |
53 |
|
eqid |
|- ( ( pInvG ` G ) ` Z ) = ( ( pInvG ` G ) ` Z ) |
54 |
1 2 3 4 41 5 14 53 23
|
mircl |
|- ( ph -> ( ( ( pInvG ` G ) ` Z ) ` Q ) e. P ) |
55 |
1 2 3 5 9 13 9 7 19
|
tgcgrcomlr |
|- ( ph -> ( Y .- E ) = ( C .- E ) ) |
56 |
25 55
|
eqtr2d |
|- ( ph -> ( C .- E ) = ( Y .- Q ) ) |
57 |
1 3 4 5 9 10 17
|
tglinerflx1 |
|- ( ph -> E e. ( E L F ) ) |
58 |
57 16
|
eleqtrrd |
|- ( ph -> E e. A ) |
59 |
|
nelne2 |
|- ( ( E e. A /\ -. C e. A ) -> E =/= C ) |
60 |
58 8 59
|
syl2anc |
|- ( ph -> E =/= C ) |
61 |
60
|
necomd |
|- ( ph -> C =/= E ) |
62 |
1 2 3 5 7 9 13 23 56 61
|
tgcgrneq |
|- ( ph -> Y =/= Q ) |
63 |
62
|
necomd |
|- ( ph -> Q =/= Y ) |
64 |
|
nelne2 |
|- ( ( Y e. A /\ -. C e. A ) -> Y =/= C ) |
65 |
40 8 64
|
syl2anc |
|- ( ph -> Y =/= C ) |
66 |
65
|
necomd |
|- ( ph -> C =/= Y ) |
67 |
20 66
|
eqnetrrd |
|- ( ph -> ( ( ( pInvG ` G ) ` R ) ` Y ) =/= Y ) |
68 |
|
eqid |
|- ( ( pInvG ` G ) ` R ) = ( ( pInvG ` G ) ` R ) |
69 |
1 2 3 4 41 5 11 68 13
|
mirinv |
|- ( ph -> ( ( ( ( pInvG ` G ) ` R ) ` Y ) = Y <-> R = Y ) ) |
70 |
69
|
necon3bid |
|- ( ph -> ( ( ( ( pInvG ` G ) ` R ) ` Y ) =/= Y <-> R =/= Y ) ) |
71 |
67 70
|
mpbid |
|- ( ph -> R =/= Y ) |
72 |
1 2 3 4 41 5 11 68 13
|
mirbtwn |
|- ( ph -> R e. ( ( ( ( pInvG ` G ) ` R ) ` Y ) I Y ) ) |
73 |
20
|
oveq1d |
|- ( ph -> ( C I Y ) = ( ( ( ( pInvG ` G ) ` R ) ` Y ) I Y ) ) |
74 |
72 73
|
eleqtrrd |
|- ( ph -> R e. ( C I Y ) ) |
75 |
1 2 3 5 7 11 13 23 71 74 24
|
tgbtwnouttr2 |
|- ( ph -> Y e. ( C I Q ) ) |
76 |
1 2 3 5 7 13 23 75
|
tgbtwncom |
|- ( ph -> Y e. ( Q I C ) ) |
77 |
|
eqid |
|- ( cgrG ` G ) = ( cgrG ` G ) |
78 |
20
|
oveq2d |
|- ( ph -> ( E .- C ) = ( E .- ( ( ( pInvG ` G ) ` R ) ` Y ) ) ) |
79 |
19 78
|
eqtrd |
|- ( ph -> ( E .- Y ) = ( E .- ( ( ( pInvG ` G ) ` R ) ` Y ) ) ) |
80 |
1 2 3 4 41 5 9 11 13
|
israg |
|- ( ph -> ( <" E R Y "> e. ( raG ` G ) <-> ( E .- Y ) = ( E .- ( ( ( pInvG ` G ) ` R ) ` Y ) ) ) ) |
81 |
79 80
|
mpbird |
|- ( ph -> <" E R Y "> e. ( raG ` G ) ) |
82 |
1 2 3 5 11 13 23 24
|
tgbtwncom |
|- ( ph -> Y e. ( Q I R ) ) |
83 |
1 2 3 5 13 23 13 9 25
|
tgcgrcomlr |
|- ( ph -> ( Q .- Y ) = ( E .- Y ) ) |
84 |
22
|
eqcomd |
|- ( ph -> ( Y .- R ) = ( Y .- Z ) ) |
85 |
1 2 3 5 23 9
|
axtgcgrrflx |
|- ( ph -> ( Q .- E ) = ( E .- Q ) ) |
86 |
25
|
eqcomd |
|- ( ph -> ( Y .- E ) = ( Y .- Q ) ) |
87 |
1 2 3 5 23 13 11 9 13 14 9 23 63 82 21 83 84 85 86
|
axtg5seg |
|- ( ph -> ( R .- E ) = ( Z .- Q ) ) |
88 |
1 2 3 5 11 9 14 23 87
|
tgcgrcomlr |
|- ( ph -> ( E .- R ) = ( Q .- Z ) ) |
89 |
1 2 3 5 13 11 13 14 84
|
tgcgrcomlr |
|- ( ph -> ( R .- Y ) = ( Z .- Y ) ) |
90 |
1 2 77 5 9 11 13 23 14 13 88 89 86
|
trgcgr |
|- ( ph -> <" E R Y "> ( cgrG ` G ) <" Q Z Y "> ) |
91 |
1 2 3 4 41 5 9 11 13 77 23 14 13 81 90
|
ragcgr |
|- ( ph -> <" Q Z Y "> e. ( raG ` G ) ) |
92 |
1 2 3 4 41 5 23 14 13 91
|
ragcom |
|- ( ph -> <" Y Z Q "> e. ( raG ` G ) ) |
93 |
1 2 3 4 41 5 13 14 23
|
israg |
|- ( ph -> ( <" Y Z Q "> e. ( raG ` G ) <-> ( Y .- Q ) = ( Y .- ( ( ( pInvG ` G ) ` Z ) ` Q ) ) ) ) |
94 |
92 93
|
mpbid |
|- ( ph -> ( Y .- Q ) = ( Y .- ( ( ( pInvG ` G ) ` Z ) ` Q ) ) ) |
95 |
1 2 3 5 13 23 13 54 94
|
tgcgrcomlr |
|- ( ph -> ( Q .- Y ) = ( ( ( ( pInvG ` G ) ` Z ) ` Q ) .- Y ) ) |
96 |
27
|
eqcomd |
|- ( ph -> ( Y .- C ) = ( Y .- D ) ) |
97 |
1 2 3 4 41 5 14 53 23
|
mircgr |
|- ( ph -> ( Z .- ( ( ( pInvG ` G ) ` Z ) ` Q ) ) = ( Z .- Q ) ) |
98 |
97
|
eqcomd |
|- ( ph -> ( Z .- Q ) = ( Z .- ( ( ( pInvG ` G ) ` Z ) ` Q ) ) ) |
99 |
1 2 3 5 14 23 14 54 98
|
tgcgrcomlr |
|- ( ph -> ( Q .- Z ) = ( ( ( ( pInvG ` G ) ` Z ) ` Q ) .- Z ) ) |
100 |
|
eqidd |
|- ( ph -> ( Y .- Z ) = ( Y .- Z ) ) |
101 |
1 2 3 5 23 13 7 54 13 15 14 14 63 76 26 95 96 99 100
|
axtg5seg |
|- ( ph -> ( C .- Z ) = ( D .- Z ) ) |
102 |
1 2 3 5 7 14 15 14 101
|
tgcgrcomlr |
|- ( ph -> ( Z .- C ) = ( Z .- D ) ) |
103 |
28
|
oveq2d |
|- ( ph -> ( Z .- D ) = ( Z .- ( ( ( pInvG ` G ) ` X ) ` C ) ) ) |
104 |
102 103
|
eqtrd |
|- ( ph -> ( Z .- C ) = ( Z .- ( ( ( pInvG ` G ) ` X ) ` C ) ) ) |
105 |
1 2 3 4 41 5 14 12 7
|
israg |
|- ( ph -> ( <" Z X C "> e. ( raG ` G ) <-> ( Z .- C ) = ( Z .- ( ( ( pInvG ` G ) ` X ) ` C ) ) ) ) |
106 |
104 105
|
mpbird |
|- ( ph -> <" Z X C "> e. ( raG ` G ) ) |
107 |
106
|
adantr |
|- ( ( ph /\ Y = X ) -> <" Z X C "> e. ( raG ` G ) ) |
108 |
71
|
necomd |
|- ( ph -> Y =/= R ) |
109 |
1 2 3 5 13 11 13 14 84 108
|
tgcgrneq |
|- ( ph -> Y =/= Z ) |
110 |
109
|
necomd |
|- ( ph -> Z =/= Y ) |
111 |
110
|
adantr |
|- ( ( ph /\ Y = X ) -> Z =/= Y ) |
112 |
111 48
|
neeqtrd |
|- ( ( ph /\ Y = X ) -> Z =/= X ) |
113 |
19
|
eqcomd |
|- ( ph -> ( E .- C ) = ( E .- Y ) ) |
114 |
113
|
adantr |
|- ( ( ph /\ Y = X ) -> ( E .- C ) = ( E .- Y ) ) |
115 |
60
|
adantr |
|- ( ( ph /\ Y = X ) -> E =/= C ) |
116 |
1 2 3 42 43 46 43 44 114 115
|
tgcgrneq |
|- ( ( ph /\ Y = X ) -> E =/= Y ) |
117 |
116
|
necomd |
|- ( ( ph /\ Y = X ) -> Y =/= E ) |
118 |
1 2 3 5 9 7 9 13 113 60
|
tgcgrneq |
|- ( ph -> E =/= Y ) |
119 |
1 3 4 5 9 13 14 118 21
|
btwnlng3 |
|- ( ph -> Z e. ( E L Y ) ) |
120 |
119
|
adantr |
|- ( ( ph /\ Y = X ) -> Z e. ( E L Y ) ) |
121 |
1 3 4 42 44 43 52 117 120
|
lncom |
|- ( ( ph /\ Y = X ) -> Z e. ( Y L E ) ) |
122 |
48
|
oveq1d |
|- ( ( ph /\ Y = X ) -> ( Y L E ) = ( X L E ) ) |
123 |
121 122
|
eleqtrd |
|- ( ( ph /\ Y = X ) -> Z e. ( X L E ) ) |
124 |
123
|
orcd |
|- ( ( ph /\ Y = X ) -> ( Z e. ( X L E ) \/ X = E ) ) |
125 |
1 2 3 4 41 42 52 51 46 43 107 112 124
|
ragcol |
|- ( ( ph /\ Y = X ) -> <" E X C "> e. ( raG ` G ) ) |
126 |
1 2 3 4 41 42 43 51 46 125
|
ragcom |
|- ( ( ph /\ Y = X ) -> <" C X E "> e. ( raG ` G ) ) |
127 |
50 126
|
eqeltrd |
|- ( ( ph /\ Y = X ) -> <" C Y E "> e. ( raG ` G ) ) |
128 |
66
|
adantr |
|- ( ( ph /\ Y = X ) -> C =/= Y ) |
129 |
1 2 3 5 7 11 13 74
|
tgbtwncom |
|- ( ph -> R e. ( Y I C ) ) |
130 |
1 4 3 5 13 11 7 129
|
btwncolg3 |
|- ( ph -> ( C e. ( Y L R ) \/ Y = R ) ) |
131 |
130
|
adantr |
|- ( ( ph /\ Y = X ) -> ( C e. ( Y L R ) \/ Y = R ) ) |
132 |
1 2 3 4 41 42 46 44 43 45 127 128 131
|
ragcol |
|- ( ( ph /\ Y = X ) -> <" R Y E "> e. ( raG ` G ) ) |
133 |
1 2 3 4 41 42 45 44 43 132
|
ragcom |
|- ( ( ph /\ Y = X ) -> <" E Y R "> e. ( raG ` G ) ) |
134 |
81
|
adantr |
|- ( ( ph /\ Y = X ) -> <" E R Y "> e. ( raG ` G ) ) |
135 |
1 2 3 4 41 42 43 44 45 133 134
|
ragflat |
|- ( ( ph /\ Y = X ) -> Y = R ) |
136 |
108
|
adantr |
|- ( ( ph /\ Y = X ) -> Y =/= R ) |
137 |
136
|
neneqd |
|- ( ( ph /\ Y = X ) -> -. Y = R ) |
138 |
135 137
|
pm2.65da |
|- ( ph -> -. Y = X ) |
139 |
138
|
neqned |
|- ( ph -> Y =/= X ) |
140 |
28
|
oveq2d |
|- ( ph -> ( Y .- D ) = ( Y .- ( ( ( pInvG ` G ) ` X ) ` C ) ) ) |
141 |
96 140
|
eqtrd |
|- ( ph -> ( Y .- C ) = ( Y .- ( ( ( pInvG ` G ) ` X ) ` C ) ) ) |
142 |
1 2 3 4 41 5 13 12 7
|
israg |
|- ( ph -> ( <" Y X C "> e. ( raG ` G ) <-> ( Y .- C ) = ( Y .- ( ( ( pInvG ` G ) ` X ) ` C ) ) ) ) |
143 |
141 142
|
mpbird |
|- ( ph -> <" Y X C "> e. ( raG ` G ) ) |
144 |
1 2 3 4 41 5 13 12 7 143
|
ragcom |
|- ( ph -> <" C X Y "> e. ( raG ` G ) ) |
145 |
1 2 3 4 5 33 6 35 36 40 32 139 144
|
ragperp |
|- ( ph -> ( C L X ) ( perpG ` G ) A ) |