| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isperp.p |
|- P = ( Base ` G ) |
| 2 |
|
isperp.d |
|- .- = ( dist ` G ) |
| 3 |
|
isperp.i |
|- I = ( Itv ` G ) |
| 4 |
|
isperp.l |
|- L = ( LineG ` G ) |
| 5 |
|
isperp.g |
|- ( ph -> G e. TarskiG ) |
| 6 |
|
isperp.a |
|- ( ph -> A e. ran L ) |
| 7 |
|
foot.x |
|- ( ph -> C e. P ) |
| 8 |
|
foot.y |
|- ( ph -> -. C e. A ) |
| 9 |
|
footexlem.e |
|- ( ph -> E e. P ) |
| 10 |
|
footexlem.f |
|- ( ph -> F e. P ) |
| 11 |
|
footexlem.r |
|- ( ph -> R e. P ) |
| 12 |
|
footexlem.x |
|- ( ph -> X e. P ) |
| 13 |
|
footexlem.y |
|- ( ph -> Y e. P ) |
| 14 |
|
footexlem.z |
|- ( ph -> Z e. P ) |
| 15 |
|
footexlem.d |
|- ( ph -> D e. P ) |
| 16 |
|
footexlem.1 |
|- ( ph -> A = ( E L F ) ) |
| 17 |
|
footexlem.2 |
|- ( ph -> E =/= F ) |
| 18 |
|
footexlem.3 |
|- ( ph -> E e. ( F I Y ) ) |
| 19 |
|
footexlem.4 |
|- ( ph -> ( E .- Y ) = ( E .- C ) ) |
| 20 |
|
footexlem.5 |
|- ( ph -> C = ( ( ( pInvG ` G ) ` R ) ` Y ) ) |
| 21 |
|
footexlem.6 |
|- ( ph -> Y e. ( E I Z ) ) |
| 22 |
|
footexlem.7 |
|- ( ph -> ( Y .- Z ) = ( Y .- R ) ) |
| 23 |
|
footexlem.q |
|- ( ph -> Q e. P ) |
| 24 |
|
footexlem.8 |
|- ( ph -> Y e. ( R I Q ) ) |
| 25 |
|
footexlem.9 |
|- ( ph -> ( Y .- Q ) = ( Y .- E ) ) |
| 26 |
|
footexlem.10 |
|- ( ph -> Y e. ( ( ( ( pInvG ` G ) ` Z ) ` Q ) I D ) ) |
| 27 |
|
footexlem.11 |
|- ( ph -> ( Y .- D ) = ( Y .- C ) ) |
| 28 |
|
footexlem.12 |
|- ( ph -> D = ( ( ( pInvG ` G ) ` X ) ` C ) ) |
| 29 |
22
|
eqcomd |
|- ( ph -> ( Y .- R ) = ( Y .- Z ) ) |
| 30 |
17
|
necomd |
|- ( ph -> F =/= E ) |
| 31 |
1 3 4 5 10 9 13 30 18
|
btwnlng3 |
|- ( ph -> Y e. ( F L E ) ) |
| 32 |
1 3 4 5 9 10 13 17 31
|
lncom |
|- ( ph -> Y e. ( E L F ) ) |
| 33 |
32 16
|
eleqtrrd |
|- ( ph -> Y e. A ) |
| 34 |
|
nelne2 |
|- ( ( Y e. A /\ -. C e. A ) -> Y =/= C ) |
| 35 |
33 8 34
|
syl2anc |
|- ( ph -> Y =/= C ) |
| 36 |
35
|
necomd |
|- ( ph -> C =/= Y ) |
| 37 |
20 36
|
eqnetrrd |
|- ( ph -> ( ( ( pInvG ` G ) ` R ) ` Y ) =/= Y ) |
| 38 |
|
eqid |
|- ( pInvG ` G ) = ( pInvG ` G ) |
| 39 |
|
eqid |
|- ( ( pInvG ` G ) ` R ) = ( ( pInvG ` G ) ` R ) |
| 40 |
1 2 3 4 38 5 11 39 13
|
mirinv |
|- ( ph -> ( ( ( ( pInvG ` G ) ` R ) ` Y ) = Y <-> R = Y ) ) |
| 41 |
40
|
necon3bid |
|- ( ph -> ( ( ( ( pInvG ` G ) ` R ) ` Y ) =/= Y <-> R =/= Y ) ) |
| 42 |
37 41
|
mpbid |
|- ( ph -> R =/= Y ) |
| 43 |
42
|
necomd |
|- ( ph -> Y =/= R ) |
| 44 |
1 2 3 5 13 11 13 14 29 43
|
tgcgrneq |
|- ( ph -> Y =/= Z ) |
| 45 |
44
|
necomd |
|- ( ph -> Z =/= Y ) |
| 46 |
|
eqid |
|- ( ( pInvG ` G ) ` Z ) = ( ( pInvG ` G ) ` Z ) |
| 47 |
|
eqid |
|- ( ( pInvG ` G ) ` X ) = ( ( pInvG ` G ) ` X ) |
| 48 |
1 2 3 4 38 5 14 46 23
|
mircl |
|- ( ph -> ( ( ( pInvG ` G ) ` Z ) ` Q ) e. P ) |
| 49 |
1 2 3 4 38 5 11 39 13
|
mirbtwn |
|- ( ph -> R e. ( ( ( ( pInvG ` G ) ` R ) ` Y ) I Y ) ) |
| 50 |
20
|
oveq1d |
|- ( ph -> ( C I Y ) = ( ( ( ( pInvG ` G ) ` R ) ` Y ) I Y ) ) |
| 51 |
49 50
|
eleqtrrd |
|- ( ph -> R e. ( C I Y ) ) |
| 52 |
1 2 3 5 7 11 13 23 42 51 24
|
tgbtwnouttr2 |
|- ( ph -> Y e. ( C I Q ) ) |
| 53 |
1 2 3 5 7 13 23 52
|
tgbtwncom |
|- ( ph -> Y e. ( Q I C ) ) |
| 54 |
|
eqid |
|- ( cgrG ` G ) = ( cgrG ` G ) |
| 55 |
20
|
oveq2d |
|- ( ph -> ( E .- C ) = ( E .- ( ( ( pInvG ` G ) ` R ) ` Y ) ) ) |
| 56 |
19 55
|
eqtrd |
|- ( ph -> ( E .- Y ) = ( E .- ( ( ( pInvG ` G ) ` R ) ` Y ) ) ) |
| 57 |
1 2 3 4 38 5 9 11 13
|
israg |
|- ( ph -> ( <" E R Y "> e. ( raG ` G ) <-> ( E .- Y ) = ( E .- ( ( ( pInvG ` G ) ` R ) ` Y ) ) ) ) |
| 58 |
56 57
|
mpbird |
|- ( ph -> <" E R Y "> e. ( raG ` G ) ) |
| 59 |
1 2 3 5 9 13 9 7 19
|
tgcgrcomlr |
|- ( ph -> ( Y .- E ) = ( C .- E ) ) |
| 60 |
25 59
|
eqtr2d |
|- ( ph -> ( C .- E ) = ( Y .- Q ) ) |
| 61 |
1 3 4 5 9 10 17
|
tglinerflx1 |
|- ( ph -> E e. ( E L F ) ) |
| 62 |
61 16
|
eleqtrrd |
|- ( ph -> E e. A ) |
| 63 |
|
nelne2 |
|- ( ( E e. A /\ -. C e. A ) -> E =/= C ) |
| 64 |
62 8 63
|
syl2anc |
|- ( ph -> E =/= C ) |
| 65 |
64
|
necomd |
|- ( ph -> C =/= E ) |
| 66 |
1 2 3 5 7 9 13 23 60 65
|
tgcgrneq |
|- ( ph -> Y =/= Q ) |
| 67 |
66
|
necomd |
|- ( ph -> Q =/= Y ) |
| 68 |
1 2 3 5 11 13 23 24
|
tgbtwncom |
|- ( ph -> Y e. ( Q I R ) ) |
| 69 |
1 2 3 5 13 23 13 9 25
|
tgcgrcomlr |
|- ( ph -> ( Q .- Y ) = ( E .- Y ) ) |
| 70 |
1 2 3 5 23 9
|
axtgcgrrflx |
|- ( ph -> ( Q .- E ) = ( E .- Q ) ) |
| 71 |
25
|
eqcomd |
|- ( ph -> ( Y .- E ) = ( Y .- Q ) ) |
| 72 |
1 2 3 5 23 13 11 9 13 14 9 23 67 68 21 69 29 70 71
|
axtg5seg |
|- ( ph -> ( R .- E ) = ( Z .- Q ) ) |
| 73 |
1 2 3 5 11 9 14 23 72
|
tgcgrcomlr |
|- ( ph -> ( E .- R ) = ( Q .- Z ) ) |
| 74 |
1 2 3 5 13 11 13 14 29
|
tgcgrcomlr |
|- ( ph -> ( R .- Y ) = ( Z .- Y ) ) |
| 75 |
1 2 54 5 9 11 13 23 14 13 73 74 71
|
trgcgr |
|- ( ph -> <" E R Y "> ( cgrG ` G ) <" Q Z Y "> ) |
| 76 |
1 2 3 4 38 5 9 11 13 54 23 14 13 58 75
|
ragcgr |
|- ( ph -> <" Q Z Y "> e. ( raG ` G ) ) |
| 77 |
1 2 3 4 38 5 23 14 13 76
|
ragcom |
|- ( ph -> <" Y Z Q "> e. ( raG ` G ) ) |
| 78 |
1 2 3 4 38 5 13 14 23
|
israg |
|- ( ph -> ( <" Y Z Q "> e. ( raG ` G ) <-> ( Y .- Q ) = ( Y .- ( ( ( pInvG ` G ) ` Z ) ` Q ) ) ) ) |
| 79 |
77 78
|
mpbid |
|- ( ph -> ( Y .- Q ) = ( Y .- ( ( ( pInvG ` G ) ` Z ) ` Q ) ) ) |
| 80 |
27
|
eqcomd |
|- ( ph -> ( Y .- C ) = ( Y .- D ) ) |
| 81 |
|
eqidd |
|- ( ph -> ( ( ( pInvG ` G ) ` Z ) ` Q ) = ( ( ( pInvG ` G ) ` Z ) ` Q ) ) |
| 82 |
1 2 3 4 38 5 46 47 23 48 13 7 15 14 12 53 26 79 80 81 28
|
krippen |
|- ( ph -> Y e. ( Z I X ) ) |
| 83 |
1 3 4 5 14 13 12 45 82
|
btwnlng3 |
|- ( ph -> X e. ( Z L Y ) ) |
| 84 |
1 3 4 5 13 14 12 44 83
|
lncom |
|- ( ph -> X e. ( Y L Z ) ) |
| 85 |
19
|
eqcomd |
|- ( ph -> ( E .- C ) = ( E .- Y ) ) |
| 86 |
1 2 3 5 9 7 9 13 85 64
|
tgcgrneq |
|- ( ph -> E =/= Y ) |
| 87 |
1 3 4 5 9 13 14 86 21
|
btwnlng3 |
|- ( ph -> Z e. ( E L Y ) ) |
| 88 |
1 3 4 5 9 13 86 86 6 62 33
|
tglinethru |
|- ( ph -> A = ( E L Y ) ) |
| 89 |
87 88
|
eleqtrrd |
|- ( ph -> Z e. A ) |
| 90 |
1 3 4 5 13 14 44 44 6 33 89
|
tglinethru |
|- ( ph -> A = ( Y L Z ) ) |
| 91 |
84 90
|
eleqtrrd |
|- ( ph -> X e. A ) |