Metamath Proof Explorer


Theorem footexlem1

Description: Lemma for footex . (Contributed by Thierry Arnoux, 19-Oct-2019) (Revised by Thierry Arnoux, 1-Jul-2023)

Ref Expression
Hypotheses isperp.p P = Base G
isperp.d - ˙ = dist G
isperp.i I = Itv G
isperp.l L = Line 𝒢 G
isperp.g φ G 𝒢 Tarski
isperp.a φ A ran L
foot.x φ C P
foot.y φ ¬ C A
footexlem.e φ E P
footexlem.f φ F P
footexlem.r φ R P
footexlem.x φ X P
footexlem.y φ Y P
footexlem.z φ Z P
footexlem.d φ D P
footexlem.1 φ A = E L F
footexlem.2 φ E F
footexlem.3 φ E F I Y
footexlem.4 φ E - ˙ Y = E - ˙ C
footexlem.5 φ C = pInv 𝒢 G R Y
footexlem.6 φ Y E I Z
footexlem.7 φ Y - ˙ Z = Y - ˙ R
footexlem.q φ Q P
footexlem.8 φ Y R I Q
footexlem.9 φ Y - ˙ Q = Y - ˙ E
footexlem.10 φ Y pInv 𝒢 G Z Q I D
footexlem.11 φ Y - ˙ D = Y - ˙ C
footexlem.12 φ D = pInv 𝒢 G X C
Assertion footexlem1 φ X A

Proof

Step Hyp Ref Expression
1 isperp.p P = Base G
2 isperp.d - ˙ = dist G
3 isperp.i I = Itv G
4 isperp.l L = Line 𝒢 G
5 isperp.g φ G 𝒢 Tarski
6 isperp.a φ A ran L
7 foot.x φ C P
8 foot.y φ ¬ C A
9 footexlem.e φ E P
10 footexlem.f φ F P
11 footexlem.r φ R P
12 footexlem.x φ X P
13 footexlem.y φ Y P
14 footexlem.z φ Z P
15 footexlem.d φ D P
16 footexlem.1 φ A = E L F
17 footexlem.2 φ E F
18 footexlem.3 φ E F I Y
19 footexlem.4 φ E - ˙ Y = E - ˙ C
20 footexlem.5 φ C = pInv 𝒢 G R Y
21 footexlem.6 φ Y E I Z
22 footexlem.7 φ Y - ˙ Z = Y - ˙ R
23 footexlem.q φ Q P
24 footexlem.8 φ Y R I Q
25 footexlem.9 φ Y - ˙ Q = Y - ˙ E
26 footexlem.10 φ Y pInv 𝒢 G Z Q I D
27 footexlem.11 φ Y - ˙ D = Y - ˙ C
28 footexlem.12 φ D = pInv 𝒢 G X C
29 22 eqcomd φ Y - ˙ R = Y - ˙ Z
30 17 necomd φ F E
31 1 3 4 5 10 9 13 30 18 btwnlng3 φ Y F L E
32 1 3 4 5 9 10 13 17 31 lncom φ Y E L F
33 32 16 eleqtrrd φ Y A
34 nelne2 Y A ¬ C A Y C
35 33 8 34 syl2anc φ Y C
36 35 necomd φ C Y
37 20 36 eqnetrrd φ pInv 𝒢 G R Y Y
38 eqid pInv 𝒢 G = pInv 𝒢 G
39 eqid pInv 𝒢 G R = pInv 𝒢 G R
40 1 2 3 4 38 5 11 39 13 mirinv φ pInv 𝒢 G R Y = Y R = Y
41 40 necon3bid φ pInv 𝒢 G R Y Y R Y
42 37 41 mpbid φ R Y
43 42 necomd φ Y R
44 1 2 3 5 13 11 13 14 29 43 tgcgrneq φ Y Z
45 44 necomd φ Z Y
46 eqid pInv 𝒢 G Z = pInv 𝒢 G Z
47 eqid pInv 𝒢 G X = pInv 𝒢 G X
48 1 2 3 4 38 5 14 46 23 mircl φ pInv 𝒢 G Z Q P
49 1 2 3 4 38 5 11 39 13 mirbtwn φ R pInv 𝒢 G R Y I Y
50 20 oveq1d φ C I Y = pInv 𝒢 G R Y I Y
51 49 50 eleqtrrd φ R C I Y
52 1 2 3 5 7 11 13 23 42 51 24 tgbtwnouttr2 φ Y C I Q
53 1 2 3 5 7 13 23 52 tgbtwncom φ Y Q I C
54 eqid 𝒢 G = 𝒢 G
55 20 oveq2d φ E - ˙ C = E - ˙ pInv 𝒢 G R Y
56 19 55 eqtrd φ E - ˙ Y = E - ˙ pInv 𝒢 G R Y
57 1 2 3 4 38 5 9 11 13 israg φ ⟨“ ERY ”⟩ 𝒢 G E - ˙ Y = E - ˙ pInv 𝒢 G R Y
58 56 57 mpbird φ ⟨“ ERY ”⟩ 𝒢 G
59 1 2 3 5 9 13 9 7 19 tgcgrcomlr φ Y - ˙ E = C - ˙ E
60 25 59 eqtr2d φ C - ˙ E = Y - ˙ Q
61 1 3 4 5 9 10 17 tglinerflx1 φ E E L F
62 61 16 eleqtrrd φ E A
63 nelne2 E A ¬ C A E C
64 62 8 63 syl2anc φ E C
65 64 necomd φ C E
66 1 2 3 5 7 9 13 23 60 65 tgcgrneq φ Y Q
67 66 necomd φ Q Y
68 1 2 3 5 11 13 23 24 tgbtwncom φ Y Q I R
69 1 2 3 5 13 23 13 9 25 tgcgrcomlr φ Q - ˙ Y = E - ˙ Y
70 1 2 3 5 23 9 axtgcgrrflx φ Q - ˙ E = E - ˙ Q
71 25 eqcomd φ Y - ˙ E = Y - ˙ Q
72 1 2 3 5 23 13 11 9 13 14 9 23 67 68 21 69 29 70 71 axtg5seg φ R - ˙ E = Z - ˙ Q
73 1 2 3 5 11 9 14 23 72 tgcgrcomlr φ E - ˙ R = Q - ˙ Z
74 1 2 3 5 13 11 13 14 29 tgcgrcomlr φ R - ˙ Y = Z - ˙ Y
75 1 2 54 5 9 11 13 23 14 13 73 74 71 trgcgr φ ⟨“ ERY ”⟩ 𝒢 G ⟨“ QZY ”⟩
76 1 2 3 4 38 5 9 11 13 54 23 14 13 58 75 ragcgr φ ⟨“ QZY ”⟩ 𝒢 G
77 1 2 3 4 38 5 23 14 13 76 ragcom φ ⟨“ YZQ ”⟩ 𝒢 G
78 1 2 3 4 38 5 13 14 23 israg φ ⟨“ YZQ ”⟩ 𝒢 G Y - ˙ Q = Y - ˙ pInv 𝒢 G Z Q
79 77 78 mpbid φ Y - ˙ Q = Y - ˙ pInv 𝒢 G Z Q
80 27 eqcomd φ Y - ˙ C = Y - ˙ D
81 eqidd φ pInv 𝒢 G Z Q = pInv 𝒢 G Z Q
82 1 2 3 4 38 5 46 47 23 48 13 7 15 14 12 53 26 79 80 81 28 krippen φ Y Z I X
83 1 3 4 5 14 13 12 45 82 btwnlng3 φ X Z L Y
84 1 3 4 5 13 14 12 44 83 lncom φ X Y L Z
85 19 eqcomd φ E - ˙ C = E - ˙ Y
86 1 2 3 5 9 7 9 13 85 64 tgcgrneq φ E Y
87 1 3 4 5 9 13 14 86 21 btwnlng3 φ Z E L Y
88 1 3 4 5 9 13 86 86 6 62 33 tglinethru φ A = E L Y
89 87 88 eleqtrrd φ Z A
90 1 3 4 5 13 14 44 44 6 33 89 tglinethru φ A = Y L Z
91 84 90 eleqtrrd φ X A