Step |
Hyp |
Ref |
Expression |
1 |
|
fprlem.1 |
⊢ 𝐵 = { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } |
2 |
|
fprlem.2 |
⊢ 𝐹 = frecs ( 𝑅 , 𝐴 , 𝐺 ) |
3 |
|
vex |
⊢ 𝑥 ∈ V |
4 |
|
vex |
⊢ 𝑢 ∈ V |
5 |
3 4
|
breldm |
⊢ ( 𝑥 𝑔 𝑢 → 𝑥 ∈ dom 𝑔 ) |
6 |
|
vex |
⊢ 𝑣 ∈ V |
7 |
3 6
|
breldm |
⊢ ( 𝑥 ℎ 𝑣 → 𝑥 ∈ dom ℎ ) |
8 |
|
elin |
⊢ ( 𝑥 ∈ ( dom 𝑔 ∩ dom ℎ ) ↔ ( 𝑥 ∈ dom 𝑔 ∧ 𝑥 ∈ dom ℎ ) ) |
9 |
8
|
biimpri |
⊢ ( ( 𝑥 ∈ dom 𝑔 ∧ 𝑥 ∈ dom ℎ ) → 𝑥 ∈ ( dom 𝑔 ∩ dom ℎ ) ) |
10 |
5 7 9
|
syl2an |
⊢ ( ( 𝑥 𝑔 𝑢 ∧ 𝑥 ℎ 𝑣 ) → 𝑥 ∈ ( dom 𝑔 ∩ dom ℎ ) ) |
11 |
|
id |
⊢ ( ( 𝑥 𝑔 𝑢 ∧ 𝑥 ℎ 𝑣 ) → ( 𝑥 𝑔 𝑢 ∧ 𝑥 ℎ 𝑣 ) ) |
12 |
4
|
brresi |
⊢ ( 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑢 ↔ ( 𝑥 ∈ ( dom 𝑔 ∩ dom ℎ ) ∧ 𝑥 𝑔 𝑢 ) ) |
13 |
6
|
brresi |
⊢ ( 𝑥 ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑣 ↔ ( 𝑥 ∈ ( dom 𝑔 ∩ dom ℎ ) ∧ 𝑥 ℎ 𝑣 ) ) |
14 |
12 13
|
anbi12i |
⊢ ( ( 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑢 ∧ 𝑥 ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑣 ) ↔ ( ( 𝑥 ∈ ( dom 𝑔 ∩ dom ℎ ) ∧ 𝑥 𝑔 𝑢 ) ∧ ( 𝑥 ∈ ( dom 𝑔 ∩ dom ℎ ) ∧ 𝑥 ℎ 𝑣 ) ) ) |
15 |
|
an4 |
⊢ ( ( ( 𝑥 ∈ ( dom 𝑔 ∩ dom ℎ ) ∧ 𝑥 𝑔 𝑢 ) ∧ ( 𝑥 ∈ ( dom 𝑔 ∩ dom ℎ ) ∧ 𝑥 ℎ 𝑣 ) ) ↔ ( ( 𝑥 ∈ ( dom 𝑔 ∩ dom ℎ ) ∧ 𝑥 ∈ ( dom 𝑔 ∩ dom ℎ ) ) ∧ ( 𝑥 𝑔 𝑢 ∧ 𝑥 ℎ 𝑣 ) ) ) |
16 |
14 15
|
bitri |
⊢ ( ( 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑢 ∧ 𝑥 ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑣 ) ↔ ( ( 𝑥 ∈ ( dom 𝑔 ∩ dom ℎ ) ∧ 𝑥 ∈ ( dom 𝑔 ∩ dom ℎ ) ) ∧ ( 𝑥 𝑔 𝑢 ∧ 𝑥 ℎ 𝑣 ) ) ) |
17 |
10 10 11 16
|
syl21anbrc |
⊢ ( ( 𝑥 𝑔 𝑢 ∧ 𝑥 ℎ 𝑣 ) → ( 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑢 ∧ 𝑥 ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑣 ) ) |
18 |
|
inss2 |
⊢ ( dom 𝑔 ∩ dom ℎ ) ⊆ dom ℎ |
19 |
1
|
frrlem3 |
⊢ ( ℎ ∈ 𝐵 → dom ℎ ⊆ 𝐴 ) |
20 |
18 19
|
sstrid |
⊢ ( ℎ ∈ 𝐵 → ( dom 𝑔 ∩ dom ℎ ) ⊆ 𝐴 ) |
21 |
20
|
adantl |
⊢ ( ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) → ( dom 𝑔 ∩ dom ℎ ) ⊆ 𝐴 ) |
22 |
21
|
adantl |
⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ) → ( dom 𝑔 ∩ dom ℎ ) ⊆ 𝐴 ) |
23 |
|
simpl1 |
⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ) → 𝑅 Fr 𝐴 ) |
24 |
|
frss |
⊢ ( ( dom 𝑔 ∩ dom ℎ ) ⊆ 𝐴 → ( 𝑅 Fr 𝐴 → 𝑅 Fr ( dom 𝑔 ∩ dom ℎ ) ) ) |
25 |
22 23 24
|
sylc |
⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ) → 𝑅 Fr ( dom 𝑔 ∩ dom ℎ ) ) |
26 |
|
simpl2 |
⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ) → 𝑅 Po 𝐴 ) |
27 |
|
poss |
⊢ ( ( dom 𝑔 ∩ dom ℎ ) ⊆ 𝐴 → ( 𝑅 Po 𝐴 → 𝑅 Po ( dom 𝑔 ∩ dom ℎ ) ) ) |
28 |
22 26 27
|
sylc |
⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ) → 𝑅 Po ( dom 𝑔 ∩ dom ℎ ) ) |
29 |
|
simpl3 |
⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ) → 𝑅 Se 𝐴 ) |
30 |
|
sess2 |
⊢ ( ( dom 𝑔 ∩ dom ℎ ) ⊆ 𝐴 → ( 𝑅 Se 𝐴 → 𝑅 Se ( dom 𝑔 ∩ dom ℎ ) ) ) |
31 |
22 29 30
|
sylc |
⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ) → 𝑅 Se ( dom 𝑔 ∩ dom ℎ ) ) |
32 |
1
|
frrlem4 |
⊢ ( ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) → ( ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) Fn ( dom 𝑔 ∩ dom ℎ ) ∧ ∀ 𝑎 ∈ ( dom 𝑔 ∩ dom ℎ ) ( ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) ‘ 𝑎 ) = ( 𝑎 𝐺 ( ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) ↾ Pred ( 𝑅 , ( dom 𝑔 ∩ dom ℎ ) , 𝑎 ) ) ) ) ) |
33 |
32
|
adantl |
⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ) → ( ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) Fn ( dom 𝑔 ∩ dom ℎ ) ∧ ∀ 𝑎 ∈ ( dom 𝑔 ∩ dom ℎ ) ( ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) ‘ 𝑎 ) = ( 𝑎 𝐺 ( ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) ↾ Pred ( 𝑅 , ( dom 𝑔 ∩ dom ℎ ) , 𝑎 ) ) ) ) ) |
34 |
1
|
frrlem4 |
⊢ ( ( ℎ ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) → ( ( ℎ ↾ ( dom ℎ ∩ dom 𝑔 ) ) Fn ( dom ℎ ∩ dom 𝑔 ) ∧ ∀ 𝑎 ∈ ( dom ℎ ∩ dom 𝑔 ) ( ( ℎ ↾ ( dom ℎ ∩ dom 𝑔 ) ) ‘ 𝑎 ) = ( 𝑎 𝐺 ( ( ℎ ↾ ( dom ℎ ∩ dom 𝑔 ) ) ↾ Pred ( 𝑅 , ( dom ℎ ∩ dom 𝑔 ) , 𝑎 ) ) ) ) ) |
35 |
|
incom |
⊢ ( dom 𝑔 ∩ dom ℎ ) = ( dom ℎ ∩ dom 𝑔 ) |
36 |
35
|
reseq2i |
⊢ ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) = ( ℎ ↾ ( dom ℎ ∩ dom 𝑔 ) ) |
37 |
|
fneq12 |
⊢ ( ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) = ( ℎ ↾ ( dom ℎ ∩ dom 𝑔 ) ) ∧ ( dom 𝑔 ∩ dom ℎ ) = ( dom ℎ ∩ dom 𝑔 ) ) → ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) Fn ( dom 𝑔 ∩ dom ℎ ) ↔ ( ℎ ↾ ( dom ℎ ∩ dom 𝑔 ) ) Fn ( dom ℎ ∩ dom 𝑔 ) ) ) |
38 |
36 35 37
|
mp2an |
⊢ ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) Fn ( dom 𝑔 ∩ dom ℎ ) ↔ ( ℎ ↾ ( dom ℎ ∩ dom 𝑔 ) ) Fn ( dom ℎ ∩ dom 𝑔 ) ) |
39 |
36
|
fveq1i |
⊢ ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) ‘ 𝑎 ) = ( ( ℎ ↾ ( dom ℎ ∩ dom 𝑔 ) ) ‘ 𝑎 ) |
40 |
|
predeq2 |
⊢ ( ( dom 𝑔 ∩ dom ℎ ) = ( dom ℎ ∩ dom 𝑔 ) → Pred ( 𝑅 , ( dom 𝑔 ∩ dom ℎ ) , 𝑎 ) = Pred ( 𝑅 , ( dom ℎ ∩ dom 𝑔 ) , 𝑎 ) ) |
41 |
35 40
|
ax-mp |
⊢ Pred ( 𝑅 , ( dom 𝑔 ∩ dom ℎ ) , 𝑎 ) = Pred ( 𝑅 , ( dom ℎ ∩ dom 𝑔 ) , 𝑎 ) |
42 |
36 41
|
reseq12i |
⊢ ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) ↾ Pred ( 𝑅 , ( dom 𝑔 ∩ dom ℎ ) , 𝑎 ) ) = ( ( ℎ ↾ ( dom ℎ ∩ dom 𝑔 ) ) ↾ Pred ( 𝑅 , ( dom ℎ ∩ dom 𝑔 ) , 𝑎 ) ) |
43 |
42
|
oveq2i |
⊢ ( 𝑎 𝐺 ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) ↾ Pred ( 𝑅 , ( dom 𝑔 ∩ dom ℎ ) , 𝑎 ) ) ) = ( 𝑎 𝐺 ( ( ℎ ↾ ( dom ℎ ∩ dom 𝑔 ) ) ↾ Pred ( 𝑅 , ( dom ℎ ∩ dom 𝑔 ) , 𝑎 ) ) ) |
44 |
39 43
|
eqeq12i |
⊢ ( ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) ‘ 𝑎 ) = ( 𝑎 𝐺 ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) ↾ Pred ( 𝑅 , ( dom 𝑔 ∩ dom ℎ ) , 𝑎 ) ) ) ↔ ( ( ℎ ↾ ( dom ℎ ∩ dom 𝑔 ) ) ‘ 𝑎 ) = ( 𝑎 𝐺 ( ( ℎ ↾ ( dom ℎ ∩ dom 𝑔 ) ) ↾ Pred ( 𝑅 , ( dom ℎ ∩ dom 𝑔 ) , 𝑎 ) ) ) ) |
45 |
35 44
|
raleqbii |
⊢ ( ∀ 𝑎 ∈ ( dom 𝑔 ∩ dom ℎ ) ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) ‘ 𝑎 ) = ( 𝑎 𝐺 ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) ↾ Pred ( 𝑅 , ( dom 𝑔 ∩ dom ℎ ) , 𝑎 ) ) ) ↔ ∀ 𝑎 ∈ ( dom ℎ ∩ dom 𝑔 ) ( ( ℎ ↾ ( dom ℎ ∩ dom 𝑔 ) ) ‘ 𝑎 ) = ( 𝑎 𝐺 ( ( ℎ ↾ ( dom ℎ ∩ dom 𝑔 ) ) ↾ Pred ( 𝑅 , ( dom ℎ ∩ dom 𝑔 ) , 𝑎 ) ) ) ) |
46 |
38 45
|
anbi12i |
⊢ ( ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) Fn ( dom 𝑔 ∩ dom ℎ ) ∧ ∀ 𝑎 ∈ ( dom 𝑔 ∩ dom ℎ ) ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) ‘ 𝑎 ) = ( 𝑎 𝐺 ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) ↾ Pred ( 𝑅 , ( dom 𝑔 ∩ dom ℎ ) , 𝑎 ) ) ) ) ↔ ( ( ℎ ↾ ( dom ℎ ∩ dom 𝑔 ) ) Fn ( dom ℎ ∩ dom 𝑔 ) ∧ ∀ 𝑎 ∈ ( dom ℎ ∩ dom 𝑔 ) ( ( ℎ ↾ ( dom ℎ ∩ dom 𝑔 ) ) ‘ 𝑎 ) = ( 𝑎 𝐺 ( ( ℎ ↾ ( dom ℎ ∩ dom 𝑔 ) ) ↾ Pred ( 𝑅 , ( dom ℎ ∩ dom 𝑔 ) , 𝑎 ) ) ) ) ) |
47 |
34 46
|
sylibr |
⊢ ( ( ℎ ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) → ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) Fn ( dom 𝑔 ∩ dom ℎ ) ∧ ∀ 𝑎 ∈ ( dom 𝑔 ∩ dom ℎ ) ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) ‘ 𝑎 ) = ( 𝑎 𝐺 ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) ↾ Pred ( 𝑅 , ( dom 𝑔 ∩ dom ℎ ) , 𝑎 ) ) ) ) ) |
48 |
47
|
ancoms |
⊢ ( ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) → ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) Fn ( dom 𝑔 ∩ dom ℎ ) ∧ ∀ 𝑎 ∈ ( dom 𝑔 ∩ dom ℎ ) ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) ‘ 𝑎 ) = ( 𝑎 𝐺 ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) ↾ Pred ( 𝑅 , ( dom 𝑔 ∩ dom ℎ ) , 𝑎 ) ) ) ) ) |
49 |
48
|
adantl |
⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ) → ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) Fn ( dom 𝑔 ∩ dom ℎ ) ∧ ∀ 𝑎 ∈ ( dom 𝑔 ∩ dom ℎ ) ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) ‘ 𝑎 ) = ( 𝑎 𝐺 ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) ↾ Pred ( 𝑅 , ( dom 𝑔 ∩ dom ℎ ) , 𝑎 ) ) ) ) ) |
50 |
|
fpr3g |
⊢ ( ( ( 𝑅 Fr ( dom 𝑔 ∩ dom ℎ ) ∧ 𝑅 Po ( dom 𝑔 ∩ dom ℎ ) ∧ 𝑅 Se ( dom 𝑔 ∩ dom ℎ ) ) ∧ ( ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) Fn ( dom 𝑔 ∩ dom ℎ ) ∧ ∀ 𝑎 ∈ ( dom 𝑔 ∩ dom ℎ ) ( ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) ‘ 𝑎 ) = ( 𝑎 𝐺 ( ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) ↾ Pred ( 𝑅 , ( dom 𝑔 ∩ dom ℎ ) , 𝑎 ) ) ) ) ∧ ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) Fn ( dom 𝑔 ∩ dom ℎ ) ∧ ∀ 𝑎 ∈ ( dom 𝑔 ∩ dom ℎ ) ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) ‘ 𝑎 ) = ( 𝑎 𝐺 ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) ↾ Pred ( 𝑅 , ( dom 𝑔 ∩ dom ℎ ) , 𝑎 ) ) ) ) ) → ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) = ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) ) |
51 |
25 28 31 33 49 50
|
syl311anc |
⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ) → ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) = ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) ) |
52 |
51
|
breqd |
⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ) → ( 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑣 ↔ 𝑥 ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑣 ) ) |
53 |
52
|
biimprd |
⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ) → ( 𝑥 ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑣 → 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑣 ) ) |
54 |
1
|
frrlem2 |
⊢ ( 𝑔 ∈ 𝐵 → Fun 𝑔 ) |
55 |
54
|
ad2antrl |
⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ) → Fun 𝑔 ) |
56 |
|
funres |
⊢ ( Fun 𝑔 → Fun ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) ) |
57 |
|
dffun2 |
⊢ ( Fun ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) ↔ ( Rel ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) ∧ ∀ 𝑥 ∀ 𝑢 ∀ 𝑣 ( ( 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑢 ∧ 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑣 ) → 𝑢 = 𝑣 ) ) ) |
58 |
|
2sp |
⊢ ( ∀ 𝑢 ∀ 𝑣 ( ( 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑢 ∧ 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑣 ) → 𝑢 = 𝑣 ) → ( ( 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑢 ∧ 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑣 ) → 𝑢 = 𝑣 ) ) |
59 |
58
|
sps |
⊢ ( ∀ 𝑥 ∀ 𝑢 ∀ 𝑣 ( ( 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑢 ∧ 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑣 ) → 𝑢 = 𝑣 ) → ( ( 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑢 ∧ 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑣 ) → 𝑢 = 𝑣 ) ) |
60 |
57 59
|
simplbiim |
⊢ ( Fun ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) → ( ( 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑢 ∧ 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑣 ) → 𝑢 = 𝑣 ) ) |
61 |
55 56 60
|
3syl |
⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ) → ( ( 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑢 ∧ 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑣 ) → 𝑢 = 𝑣 ) ) |
62 |
53 61
|
sylan2d |
⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ) → ( ( 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑢 ∧ 𝑥 ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑣 ) → 𝑢 = 𝑣 ) ) |
63 |
17 62
|
syl5 |
⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ) → ( ( 𝑥 𝑔 𝑢 ∧ 𝑥 ℎ 𝑣 ) → 𝑢 = 𝑣 ) ) |