| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgpnabl.g | ⊢ 𝐺  =  ( freeGrp ‘ 𝐼 ) | 
						
							| 2 |  | relsdom | ⊢ Rel   ≺ | 
						
							| 3 | 2 | brrelex2i | ⊢ ( 1o  ≺  𝐼  →  𝐼  ∈  V ) | 
						
							| 4 |  | 1sdom | ⊢ ( 𝐼  ∈  V  →  ( 1o  ≺  𝐼  ↔  ∃ 𝑎  ∈  𝐼 ∃ 𝑏  ∈  𝐼 ¬  𝑎  =  𝑏 ) ) | 
						
							| 5 | 3 4 | syl | ⊢ ( 1o  ≺  𝐼  →  ( 1o  ≺  𝐼  ↔  ∃ 𝑎  ∈  𝐼 ∃ 𝑏  ∈  𝐼 ¬  𝑎  =  𝑏 ) ) | 
						
							| 6 | 5 | ibi | ⊢ ( 1o  ≺  𝐼  →  ∃ 𝑎  ∈  𝐼 ∃ 𝑏  ∈  𝐼 ¬  𝑎  =  𝑏 ) | 
						
							| 7 |  | eqid | ⊢ (  I  ‘ Word  ( 𝐼  ×  2o ) )  =  (  I  ‘ Word  ( 𝐼  ×  2o ) ) | 
						
							| 8 |  | eqid | ⊢ (  ~FG  ‘ 𝐼 )  =  (  ~FG  ‘ 𝐼 ) | 
						
							| 9 |  | eqid | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) | 
						
							| 10 |  | eqid | ⊢ ( 𝑦  ∈  𝐼 ,  𝑧  ∈  2o  ↦  〈 𝑦 ,  ( 1o  ∖  𝑧 ) 〉 )  =  ( 𝑦  ∈  𝐼 ,  𝑧  ∈  2o  ↦  〈 𝑦 ,  ( 1o  ∖  𝑧 ) 〉 ) | 
						
							| 11 |  | eqid | ⊢ ( 𝑣  ∈  (  I  ‘ Word  ( 𝐼  ×  2o ) )  ↦  ( 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑣 ) ) ,  𝑤  ∈  ( 𝐼  ×  2o )  ↦  ( 𝑣  splice  〈 𝑛 ,  𝑛 ,  〈“ 𝑤 ( ( 𝑦  ∈  𝐼 ,  𝑧  ∈  2o  ↦  〈 𝑦 ,  ( 1o  ∖  𝑧 ) 〉 ) ‘ 𝑤 ) ”〉 〉 ) ) )  =  ( 𝑣  ∈  (  I  ‘ Word  ( 𝐼  ×  2o ) )  ↦  ( 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑣 ) ) ,  𝑤  ∈  ( 𝐼  ×  2o )  ↦  ( 𝑣  splice  〈 𝑛 ,  𝑛 ,  〈“ 𝑤 ( ( 𝑦  ∈  𝐼 ,  𝑧  ∈  2o  ↦  〈 𝑦 ,  ( 1o  ∖  𝑧 ) 〉 ) ‘ 𝑤 ) ”〉 〉 ) ) ) | 
						
							| 12 |  | eqid | ⊢ ( (  I  ‘ Word  ( 𝐼  ×  2o ) )  ∖  ∪  𝑥  ∈  (  I  ‘ Word  ( 𝐼  ×  2o ) ) ran  ( ( 𝑣  ∈  (  I  ‘ Word  ( 𝐼  ×  2o ) )  ↦  ( 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑣 ) ) ,  𝑤  ∈  ( 𝐼  ×  2o )  ↦  ( 𝑣  splice  〈 𝑛 ,  𝑛 ,  〈“ 𝑤 ( ( 𝑦  ∈  𝐼 ,  𝑧  ∈  2o  ↦  〈 𝑦 ,  ( 1o  ∖  𝑧 ) 〉 ) ‘ 𝑤 ) ”〉 〉 ) ) ) ‘ 𝑥 ) )  =  ( (  I  ‘ Word  ( 𝐼  ×  2o ) )  ∖  ∪  𝑥  ∈  (  I  ‘ Word  ( 𝐼  ×  2o ) ) ran  ( ( 𝑣  ∈  (  I  ‘ Word  ( 𝐼  ×  2o ) )  ↦  ( 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑣 ) ) ,  𝑤  ∈  ( 𝐼  ×  2o )  ↦  ( 𝑣  splice  〈 𝑛 ,  𝑛 ,  〈“ 𝑤 ( ( 𝑦  ∈  𝐼 ,  𝑧  ∈  2o  ↦  〈 𝑦 ,  ( 1o  ∖  𝑧 ) 〉 ) ‘ 𝑤 ) ”〉 〉 ) ) ) ‘ 𝑥 ) ) | 
						
							| 13 |  | eqid | ⊢ ( varFGrp ‘ 𝐼 )  =  ( varFGrp ‘ 𝐼 ) | 
						
							| 14 | 3 | ad2antrr | ⊢ ( ( ( 1o  ≺  𝐼  ∧  ( 𝑎  ∈  𝐼  ∧  𝑏  ∈  𝐼 ) )  ∧  𝐺  ∈  Abel )  →  𝐼  ∈  V ) | 
						
							| 15 |  | simplrl | ⊢ ( ( ( 1o  ≺  𝐼  ∧  ( 𝑎  ∈  𝐼  ∧  𝑏  ∈  𝐼 ) )  ∧  𝐺  ∈  Abel )  →  𝑎  ∈  𝐼 ) | 
						
							| 16 |  | simplrr | ⊢ ( ( ( 1o  ≺  𝐼  ∧  ( 𝑎  ∈  𝐼  ∧  𝑏  ∈  𝐼 ) )  ∧  𝐺  ∈  Abel )  →  𝑏  ∈  𝐼 ) | 
						
							| 17 |  | simpr | ⊢ ( ( ( 1o  ≺  𝐼  ∧  ( 𝑎  ∈  𝐼  ∧  𝑏  ∈  𝐼 ) )  ∧  𝐺  ∈  Abel )  →  𝐺  ∈  Abel ) | 
						
							| 18 |  | eqid | ⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) | 
						
							| 19 | 8 13 1 18 | vrgpf | ⊢ ( 𝐼  ∈  V  →  ( varFGrp ‘ 𝐼 ) : 𝐼 ⟶ ( Base ‘ 𝐺 ) ) | 
						
							| 20 | 14 19 | syl | ⊢ ( ( ( 1o  ≺  𝐼  ∧  ( 𝑎  ∈  𝐼  ∧  𝑏  ∈  𝐼 ) )  ∧  𝐺  ∈  Abel )  →  ( varFGrp ‘ 𝐼 ) : 𝐼 ⟶ ( Base ‘ 𝐺 ) ) | 
						
							| 21 | 20 15 | ffvelcdmd | ⊢ ( ( ( 1o  ≺  𝐼  ∧  ( 𝑎  ∈  𝐼  ∧  𝑏  ∈  𝐼 ) )  ∧  𝐺  ∈  Abel )  →  ( ( varFGrp ‘ 𝐼 ) ‘ 𝑎 )  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 22 | 20 16 | ffvelcdmd | ⊢ ( ( ( 1o  ≺  𝐼  ∧  ( 𝑎  ∈  𝐼  ∧  𝑏  ∈  𝐼 ) )  ∧  𝐺  ∈  Abel )  →  ( ( varFGrp ‘ 𝐼 ) ‘ 𝑏 )  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 23 | 18 9 | ablcom | ⊢ ( ( 𝐺  ∈  Abel  ∧  ( ( varFGrp ‘ 𝐼 ) ‘ 𝑎 )  ∈  ( Base ‘ 𝐺 )  ∧  ( ( varFGrp ‘ 𝐼 ) ‘ 𝑏 )  ∈  ( Base ‘ 𝐺 ) )  →  ( ( ( varFGrp ‘ 𝐼 ) ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ 𝑏 ) )  =  ( ( ( varFGrp ‘ 𝐼 ) ‘ 𝑏 ) ( +g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ 𝑎 ) ) ) | 
						
							| 24 | 17 21 22 23 | syl3anc | ⊢ ( ( ( 1o  ≺  𝐼  ∧  ( 𝑎  ∈  𝐼  ∧  𝑏  ∈  𝐼 ) )  ∧  𝐺  ∈  Abel )  →  ( ( ( varFGrp ‘ 𝐼 ) ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ 𝑏 ) )  =  ( ( ( varFGrp ‘ 𝐼 ) ‘ 𝑏 ) ( +g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ 𝑎 ) ) ) | 
						
							| 25 | 1 7 8 9 10 11 12 13 14 15 16 24 | frgpnabllem2 | ⊢ ( ( ( 1o  ≺  𝐼  ∧  ( 𝑎  ∈  𝐼  ∧  𝑏  ∈  𝐼 ) )  ∧  𝐺  ∈  Abel )  →  𝑎  =  𝑏 ) | 
						
							| 26 | 25 | ex | ⊢ ( ( 1o  ≺  𝐼  ∧  ( 𝑎  ∈  𝐼  ∧  𝑏  ∈  𝐼 ) )  →  ( 𝐺  ∈  Abel  →  𝑎  =  𝑏 ) ) | 
						
							| 27 | 26 | con3d | ⊢ ( ( 1o  ≺  𝐼  ∧  ( 𝑎  ∈  𝐼  ∧  𝑏  ∈  𝐼 ) )  →  ( ¬  𝑎  =  𝑏  →  ¬  𝐺  ∈  Abel ) ) | 
						
							| 28 | 27 | rexlimdvva | ⊢ ( 1o  ≺  𝐼  →  ( ∃ 𝑎  ∈  𝐼 ∃ 𝑏  ∈  𝐼 ¬  𝑎  =  𝑏  →  ¬  𝐺  ∈  Abel ) ) | 
						
							| 29 | 6 28 | mpd | ⊢ ( 1o  ≺  𝐼  →  ¬  𝐺  ∈  Abel ) |