Metamath Proof Explorer


Theorem frgpnabl

Description: The free group on two or more generators is not abelian. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypothesis frgpnabl.g G = freeGrp I
Assertion frgpnabl 1 𝑜 I ¬ G Abel

Proof

Step Hyp Ref Expression
1 frgpnabl.g G = freeGrp I
2 relsdom Rel
3 2 brrelex2i 1 𝑜 I I V
4 1sdom I V 1 𝑜 I a I b I ¬ a = b
5 3 4 syl 1 𝑜 I 1 𝑜 I a I b I ¬ a = b
6 5 ibi 1 𝑜 I a I b I ¬ a = b
7 eqid I Word I × 2 𝑜 = I Word I × 2 𝑜
8 eqid ~ FG I = ~ FG I
9 eqid + G = + G
10 eqid y I , z 2 𝑜 y 1 𝑜 z = y I , z 2 𝑜 y 1 𝑜 z
11 eqid v I Word I × 2 𝑜 n 0 v , w I × 2 𝑜 v splice n n ⟨“ w y I , z 2 𝑜 y 1 𝑜 z w ”⟩ = v I Word I × 2 𝑜 n 0 v , w I × 2 𝑜 v splice n n ⟨“ w y I , z 2 𝑜 y 1 𝑜 z w ”⟩
12 eqid I Word I × 2 𝑜 x I Word I × 2 𝑜 ran v I Word I × 2 𝑜 n 0 v , w I × 2 𝑜 v splice n n ⟨“ w y I , z 2 𝑜 y 1 𝑜 z w ”⟩ x = I Word I × 2 𝑜 x I Word I × 2 𝑜 ran v I Word I × 2 𝑜 n 0 v , w I × 2 𝑜 v splice n n ⟨“ w y I , z 2 𝑜 y 1 𝑜 z w ”⟩ x
13 eqid var FGrp I = var FGrp I
14 3 ad2antrr 1 𝑜 I a I b I G Abel I V
15 simplrl 1 𝑜 I a I b I G Abel a I
16 simplrr 1 𝑜 I a I b I G Abel b I
17 simpr 1 𝑜 I a I b I G Abel G Abel
18 eqid Base G = Base G
19 8 13 1 18 vrgpf I V var FGrp I : I Base G
20 14 19 syl 1 𝑜 I a I b I G Abel var FGrp I : I Base G
21 20 15 ffvelrnd 1 𝑜 I a I b I G Abel var FGrp I a Base G
22 20 16 ffvelrnd 1 𝑜 I a I b I G Abel var FGrp I b Base G
23 18 9 ablcom G Abel var FGrp I a Base G var FGrp I b Base G var FGrp I a + G var FGrp I b = var FGrp I b + G var FGrp I a
24 17 21 22 23 syl3anc 1 𝑜 I a I b I G Abel var FGrp I a + G var FGrp I b = var FGrp I b + G var FGrp I a
25 1 7 8 9 10 11 12 13 14 15 16 24 frgpnabllem2 1 𝑜 I a I b I G Abel a = b
26 25 ex 1 𝑜 I a I b I G Abel a = b
27 26 con3d 1 𝑜 I a I b I ¬ a = b ¬ G Abel
28 27 rexlimdvva 1 𝑜 I a I b I ¬ a = b ¬ G Abel
29 6 28 mpd 1 𝑜 I ¬ G Abel