| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgpnabl.g |  |-  G = ( freeGrp ` I ) | 
						
							| 2 |  | relsdom |  |-  Rel ~< | 
						
							| 3 | 2 | brrelex2i |  |-  ( 1o ~< I -> I e. _V ) | 
						
							| 4 |  | 1sdom |  |-  ( I e. _V -> ( 1o ~< I <-> E. a e. I E. b e. I -. a = b ) ) | 
						
							| 5 | 3 4 | syl |  |-  ( 1o ~< I -> ( 1o ~< I <-> E. a e. I E. b e. I -. a = b ) ) | 
						
							| 6 | 5 | ibi |  |-  ( 1o ~< I -> E. a e. I E. b e. I -. a = b ) | 
						
							| 7 |  | eqid |  |-  ( _I ` Word ( I X. 2o ) ) = ( _I ` Word ( I X. 2o ) ) | 
						
							| 8 |  | eqid |  |-  ( ~FG ` I ) = ( ~FG ` I ) | 
						
							| 9 |  | eqid |  |-  ( +g ` G ) = ( +g ` G ) | 
						
							| 10 |  | eqid |  |-  ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) | 
						
							| 11 |  | eqid |  |-  ( v e. ( _I ` Word ( I X. 2o ) ) |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) ` w ) "> >. ) ) ) = ( v e. ( _I ` Word ( I X. 2o ) ) |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) ` w ) "> >. ) ) ) | 
						
							| 12 |  | eqid |  |-  ( ( _I ` Word ( I X. 2o ) ) \ U_ x e. ( _I ` Word ( I X. 2o ) ) ran ( ( v e. ( _I ` Word ( I X. 2o ) ) |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) ` w ) "> >. ) ) ) ` x ) ) = ( ( _I ` Word ( I X. 2o ) ) \ U_ x e. ( _I ` Word ( I X. 2o ) ) ran ( ( v e. ( _I ` Word ( I X. 2o ) ) |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) ` w ) "> >. ) ) ) ` x ) ) | 
						
							| 13 |  | eqid |  |-  ( varFGrp ` I ) = ( varFGrp ` I ) | 
						
							| 14 | 3 | ad2antrr |  |-  ( ( ( 1o ~< I /\ ( a e. I /\ b e. I ) ) /\ G e. Abel ) -> I e. _V ) | 
						
							| 15 |  | simplrl |  |-  ( ( ( 1o ~< I /\ ( a e. I /\ b e. I ) ) /\ G e. Abel ) -> a e. I ) | 
						
							| 16 |  | simplrr |  |-  ( ( ( 1o ~< I /\ ( a e. I /\ b e. I ) ) /\ G e. Abel ) -> b e. I ) | 
						
							| 17 |  | simpr |  |-  ( ( ( 1o ~< I /\ ( a e. I /\ b e. I ) ) /\ G e. Abel ) -> G e. Abel ) | 
						
							| 18 |  | eqid |  |-  ( Base ` G ) = ( Base ` G ) | 
						
							| 19 | 8 13 1 18 | vrgpf |  |-  ( I e. _V -> ( varFGrp ` I ) : I --> ( Base ` G ) ) | 
						
							| 20 | 14 19 | syl |  |-  ( ( ( 1o ~< I /\ ( a e. I /\ b e. I ) ) /\ G e. Abel ) -> ( varFGrp ` I ) : I --> ( Base ` G ) ) | 
						
							| 21 | 20 15 | ffvelcdmd |  |-  ( ( ( 1o ~< I /\ ( a e. I /\ b e. I ) ) /\ G e. Abel ) -> ( ( varFGrp ` I ) ` a ) e. ( Base ` G ) ) | 
						
							| 22 | 20 16 | ffvelcdmd |  |-  ( ( ( 1o ~< I /\ ( a e. I /\ b e. I ) ) /\ G e. Abel ) -> ( ( varFGrp ` I ) ` b ) e. ( Base ` G ) ) | 
						
							| 23 | 18 9 | ablcom |  |-  ( ( G e. Abel /\ ( ( varFGrp ` I ) ` a ) e. ( Base ` G ) /\ ( ( varFGrp ` I ) ` b ) e. ( Base ` G ) ) -> ( ( ( varFGrp ` I ) ` a ) ( +g ` G ) ( ( varFGrp ` I ) ` b ) ) = ( ( ( varFGrp ` I ) ` b ) ( +g ` G ) ( ( varFGrp ` I ) ` a ) ) ) | 
						
							| 24 | 17 21 22 23 | syl3anc |  |-  ( ( ( 1o ~< I /\ ( a e. I /\ b e. I ) ) /\ G e. Abel ) -> ( ( ( varFGrp ` I ) ` a ) ( +g ` G ) ( ( varFGrp ` I ) ` b ) ) = ( ( ( varFGrp ` I ) ` b ) ( +g ` G ) ( ( varFGrp ` I ) ` a ) ) ) | 
						
							| 25 | 1 7 8 9 10 11 12 13 14 15 16 24 | frgpnabllem2 |  |-  ( ( ( 1o ~< I /\ ( a e. I /\ b e. I ) ) /\ G e. Abel ) -> a = b ) | 
						
							| 26 | 25 | ex |  |-  ( ( 1o ~< I /\ ( a e. I /\ b e. I ) ) -> ( G e. Abel -> a = b ) ) | 
						
							| 27 | 26 | con3d |  |-  ( ( 1o ~< I /\ ( a e. I /\ b e. I ) ) -> ( -. a = b -> -. G e. Abel ) ) | 
						
							| 28 | 27 | rexlimdvva |  |-  ( 1o ~< I -> ( E. a e. I E. b e. I -. a = b -> -. G e. Abel ) ) | 
						
							| 29 | 6 28 | mpd |  |-  ( 1o ~< I -> -. G e. Abel ) |