Step |
Hyp |
Ref |
Expression |
1 |
|
imasabl.u |
|- ( ph -> U = ( F "s R ) ) |
2 |
|
imasabl.v |
|- ( ph -> V = ( Base ` R ) ) |
3 |
|
imasabl.p |
|- ( ph -> .+ = ( +g ` R ) ) |
4 |
|
imasabl.f |
|- ( ph -> F : V -onto-> B ) |
5 |
|
imasabl.e |
|- ( ( ph /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a .+ b ) ) = ( F ` ( p .+ q ) ) ) ) |
6 |
|
imasabl.r |
|- ( ph -> R e. Abel ) |
7 |
|
imasabl.z |
|- .0. = ( 0g ` R ) |
8 |
6
|
ablgrpd |
|- ( ph -> R e. Grp ) |
9 |
1 2 3 4 5 8 7
|
imasgrp |
|- ( ph -> ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) |
10 |
1 2 4 6
|
imasbas |
|- ( ph -> B = ( Base ` U ) ) |
11 |
10
|
eqcomd |
|- ( ph -> ( Base ` U ) = B ) |
12 |
11
|
eleq2d |
|- ( ph -> ( x e. ( Base ` U ) <-> x e. B ) ) |
13 |
11
|
eleq2d |
|- ( ph -> ( y e. ( Base ` U ) <-> y e. B ) ) |
14 |
12 13
|
anbi12d |
|- ( ph -> ( ( x e. ( Base ` U ) /\ y e. ( Base ` U ) ) <-> ( x e. B /\ y e. B ) ) ) |
15 |
14
|
adantr |
|- ( ( ph /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) -> ( ( x e. ( Base ` U ) /\ y e. ( Base ` U ) ) <-> ( x e. B /\ y e. B ) ) ) |
16 |
|
foelcdmi |
|- ( ( F : V -onto-> B /\ x e. B ) -> E. a e. V ( F ` a ) = x ) |
17 |
16
|
ex |
|- ( F : V -onto-> B -> ( x e. B -> E. a e. V ( F ` a ) = x ) ) |
18 |
|
foelcdmi |
|- ( ( F : V -onto-> B /\ y e. B ) -> E. b e. V ( F ` b ) = y ) |
19 |
18
|
ex |
|- ( F : V -onto-> B -> ( y e. B -> E. b e. V ( F ` b ) = y ) ) |
20 |
17 19
|
anim12d |
|- ( F : V -onto-> B -> ( ( x e. B /\ y e. B ) -> ( E. a e. V ( F ` a ) = x /\ E. b e. V ( F ` b ) = y ) ) ) |
21 |
4 20
|
syl |
|- ( ph -> ( ( x e. B /\ y e. B ) -> ( E. a e. V ( F ` a ) = x /\ E. b e. V ( F ` b ) = y ) ) ) |
22 |
21
|
adantr |
|- ( ( ph /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) -> ( ( x e. B /\ y e. B ) -> ( E. a e. V ( F ` a ) = x /\ E. b e. V ( F ` b ) = y ) ) ) |
23 |
6
|
ad3antrrr |
|- ( ( ( ( ph /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) /\ a e. V ) /\ b e. V ) -> R e. Abel ) |
24 |
2
|
eleq2d |
|- ( ph -> ( a e. V <-> a e. ( Base ` R ) ) ) |
25 |
24
|
biimpd |
|- ( ph -> ( a e. V -> a e. ( Base ` R ) ) ) |
26 |
25
|
adantr |
|- ( ( ph /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) -> ( a e. V -> a e. ( Base ` R ) ) ) |
27 |
26
|
imp |
|- ( ( ( ph /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) /\ a e. V ) -> a e. ( Base ` R ) ) |
28 |
27
|
adantr |
|- ( ( ( ( ph /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) /\ a e. V ) /\ b e. V ) -> a e. ( Base ` R ) ) |
29 |
2
|
eleq2d |
|- ( ph -> ( b e. V <-> b e. ( Base ` R ) ) ) |
30 |
29
|
biimpd |
|- ( ph -> ( b e. V -> b e. ( Base ` R ) ) ) |
31 |
30
|
adantr |
|- ( ( ph /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) -> ( b e. V -> b e. ( Base ` R ) ) ) |
32 |
31
|
adantr |
|- ( ( ( ph /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) /\ a e. V ) -> ( b e. V -> b e. ( Base ` R ) ) ) |
33 |
32
|
imp |
|- ( ( ( ( ph /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) /\ a e. V ) /\ b e. V ) -> b e. ( Base ` R ) ) |
34 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
35 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
36 |
34 35
|
ablcom |
|- ( ( R e. Abel /\ a e. ( Base ` R ) /\ b e. ( Base ` R ) ) -> ( a ( +g ` R ) b ) = ( b ( +g ` R ) a ) ) |
37 |
23 28 33 36
|
syl3anc |
|- ( ( ( ( ph /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) /\ a e. V ) /\ b e. V ) -> ( a ( +g ` R ) b ) = ( b ( +g ` R ) a ) ) |
38 |
37
|
fveq2d |
|- ( ( ( ( ph /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) /\ a e. V ) /\ b e. V ) -> ( F ` ( a ( +g ` R ) b ) ) = ( F ` ( b ( +g ` R ) a ) ) ) |
39 |
|
simplll |
|- ( ( ( ( ph /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) /\ a e. V ) /\ b e. V ) -> ph ) |
40 |
|
simpr |
|- ( ( ( ph /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) /\ a e. V ) -> a e. V ) |
41 |
40
|
adantr |
|- ( ( ( ( ph /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) /\ a e. V ) /\ b e. V ) -> a e. V ) |
42 |
|
simpr |
|- ( ( ( ( ph /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) /\ a e. V ) /\ b e. V ) -> b e. V ) |
43 |
3
|
eqcomd |
|- ( ph -> ( +g ` R ) = .+ ) |
44 |
43
|
oveqd |
|- ( ph -> ( a ( +g ` R ) b ) = ( a .+ b ) ) |
45 |
44
|
fveq2d |
|- ( ph -> ( F ` ( a ( +g ` R ) b ) ) = ( F ` ( a .+ b ) ) ) |
46 |
43
|
oveqd |
|- ( ph -> ( p ( +g ` R ) q ) = ( p .+ q ) ) |
47 |
46
|
fveq2d |
|- ( ph -> ( F ` ( p ( +g ` R ) q ) ) = ( F ` ( p .+ q ) ) ) |
48 |
45 47
|
eqeq12d |
|- ( ph -> ( ( F ` ( a ( +g ` R ) b ) ) = ( F ` ( p ( +g ` R ) q ) ) <-> ( F ` ( a .+ b ) ) = ( F ` ( p .+ q ) ) ) ) |
49 |
48
|
3ad2ant1 |
|- ( ( ph /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( F ` ( a ( +g ` R ) b ) ) = ( F ` ( p ( +g ` R ) q ) ) <-> ( F ` ( a .+ b ) ) = ( F ` ( p .+ q ) ) ) ) |
50 |
5 49
|
sylibrd |
|- ( ( ph /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a ( +g ` R ) b ) ) = ( F ` ( p ( +g ` R ) q ) ) ) ) |
51 |
|
eqid |
|- ( +g ` U ) = ( +g ` U ) |
52 |
4 50 1 2 6 35 51
|
imasaddval |
|- ( ( ph /\ a e. V /\ b e. V ) -> ( ( F ` a ) ( +g ` U ) ( F ` b ) ) = ( F ` ( a ( +g ` R ) b ) ) ) |
53 |
39 41 42 52
|
syl3anc |
|- ( ( ( ( ph /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) /\ a e. V ) /\ b e. V ) -> ( ( F ` a ) ( +g ` U ) ( F ` b ) ) = ( F ` ( a ( +g ` R ) b ) ) ) |
54 |
4 50 1 2 6 35 51
|
imasaddval |
|- ( ( ph /\ b e. V /\ a e. V ) -> ( ( F ` b ) ( +g ` U ) ( F ` a ) ) = ( F ` ( b ( +g ` R ) a ) ) ) |
55 |
39 42 41 54
|
syl3anc |
|- ( ( ( ( ph /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) /\ a e. V ) /\ b e. V ) -> ( ( F ` b ) ( +g ` U ) ( F ` a ) ) = ( F ` ( b ( +g ` R ) a ) ) ) |
56 |
38 53 55
|
3eqtr4d |
|- ( ( ( ( ph /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) /\ a e. V ) /\ b e. V ) -> ( ( F ` a ) ( +g ` U ) ( F ` b ) ) = ( ( F ` b ) ( +g ` U ) ( F ` a ) ) ) |
57 |
56
|
adantr |
|- ( ( ( ( ( ph /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) /\ a e. V ) /\ b e. V ) /\ ( ( F ` b ) = y /\ ( F ` a ) = x ) ) -> ( ( F ` a ) ( +g ` U ) ( F ` b ) ) = ( ( F ` b ) ( +g ` U ) ( F ` a ) ) ) |
58 |
|
oveq12 |
|- ( ( ( F ` a ) = x /\ ( F ` b ) = y ) -> ( ( F ` a ) ( +g ` U ) ( F ` b ) ) = ( x ( +g ` U ) y ) ) |
59 |
58
|
ancoms |
|- ( ( ( F ` b ) = y /\ ( F ` a ) = x ) -> ( ( F ` a ) ( +g ` U ) ( F ` b ) ) = ( x ( +g ` U ) y ) ) |
60 |
|
oveq12 |
|- ( ( ( F ` b ) = y /\ ( F ` a ) = x ) -> ( ( F ` b ) ( +g ` U ) ( F ` a ) ) = ( y ( +g ` U ) x ) ) |
61 |
59 60
|
eqeq12d |
|- ( ( ( F ` b ) = y /\ ( F ` a ) = x ) -> ( ( ( F ` a ) ( +g ` U ) ( F ` b ) ) = ( ( F ` b ) ( +g ` U ) ( F ` a ) ) <-> ( x ( +g ` U ) y ) = ( y ( +g ` U ) x ) ) ) |
62 |
61
|
adantl |
|- ( ( ( ( ( ph /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) /\ a e. V ) /\ b e. V ) /\ ( ( F ` b ) = y /\ ( F ` a ) = x ) ) -> ( ( ( F ` a ) ( +g ` U ) ( F ` b ) ) = ( ( F ` b ) ( +g ` U ) ( F ` a ) ) <-> ( x ( +g ` U ) y ) = ( y ( +g ` U ) x ) ) ) |
63 |
57 62
|
mpbid |
|- ( ( ( ( ( ph /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) /\ a e. V ) /\ b e. V ) /\ ( ( F ` b ) = y /\ ( F ` a ) = x ) ) -> ( x ( +g ` U ) y ) = ( y ( +g ` U ) x ) ) |
64 |
63
|
exp32 |
|- ( ( ( ( ph /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) /\ a e. V ) /\ b e. V ) -> ( ( F ` b ) = y -> ( ( F ` a ) = x -> ( x ( +g ` U ) y ) = ( y ( +g ` U ) x ) ) ) ) |
65 |
64
|
rexlimdva |
|- ( ( ( ph /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) /\ a e. V ) -> ( E. b e. V ( F ` b ) = y -> ( ( F ` a ) = x -> ( x ( +g ` U ) y ) = ( y ( +g ` U ) x ) ) ) ) |
66 |
65
|
com23 |
|- ( ( ( ph /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) /\ a e. V ) -> ( ( F ` a ) = x -> ( E. b e. V ( F ` b ) = y -> ( x ( +g ` U ) y ) = ( y ( +g ` U ) x ) ) ) ) |
67 |
66
|
rexlimdva |
|- ( ( ph /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) -> ( E. a e. V ( F ` a ) = x -> ( E. b e. V ( F ` b ) = y -> ( x ( +g ` U ) y ) = ( y ( +g ` U ) x ) ) ) ) |
68 |
67
|
impd |
|- ( ( ph /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) -> ( ( E. a e. V ( F ` a ) = x /\ E. b e. V ( F ` b ) = y ) -> ( x ( +g ` U ) y ) = ( y ( +g ` U ) x ) ) ) |
69 |
22 68
|
syld |
|- ( ( ph /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) -> ( ( x e. B /\ y e. B ) -> ( x ( +g ` U ) y ) = ( y ( +g ` U ) x ) ) ) |
70 |
15 69
|
sylbid |
|- ( ( ph /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) -> ( ( x e. ( Base ` U ) /\ y e. ( Base ` U ) ) -> ( x ( +g ` U ) y ) = ( y ( +g ` U ) x ) ) ) |
71 |
70
|
imp |
|- ( ( ( ph /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) /\ ( x e. ( Base ` U ) /\ y e. ( Base ` U ) ) ) -> ( x ( +g ` U ) y ) = ( y ( +g ` U ) x ) ) |
72 |
71
|
ralrimivva |
|- ( ( ph /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) -> A. x e. ( Base ` U ) A. y e. ( Base ` U ) ( x ( +g ` U ) y ) = ( y ( +g ` U ) x ) ) |
73 |
|
simpr |
|- ( ( ph /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) -> ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) |
74 |
72 73
|
jca |
|- ( ( ph /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) -> ( A. x e. ( Base ` U ) A. y e. ( Base ` U ) ( x ( +g ` U ) y ) = ( y ( +g ` U ) x ) /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) ) |
75 |
9 74
|
mpdan |
|- ( ph -> ( A. x e. ( Base ` U ) A. y e. ( Base ` U ) ( x ( +g ` U ) y ) = ( y ( +g ` U ) x ) /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) ) |
76 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
77 |
76 51
|
isabl2 |
|- ( U e. Abel <-> ( U e. Grp /\ A. x e. ( Base ` U ) A. y e. ( Base ` U ) ( x ( +g ` U ) y ) = ( y ( +g ` U ) x ) ) ) |
78 |
77
|
anbi1i |
|- ( ( U e. Abel /\ ( F ` .0. ) = ( 0g ` U ) ) <-> ( ( U e. Grp /\ A. x e. ( Base ` U ) A. y e. ( Base ` U ) ( x ( +g ` U ) y ) = ( y ( +g ` U ) x ) ) /\ ( F ` .0. ) = ( 0g ` U ) ) ) |
79 |
|
an21 |
|- ( ( ( U e. Grp /\ A. x e. ( Base ` U ) A. y e. ( Base ` U ) ( x ( +g ` U ) y ) = ( y ( +g ` U ) x ) ) /\ ( F ` .0. ) = ( 0g ` U ) ) <-> ( A. x e. ( Base ` U ) A. y e. ( Base ` U ) ( x ( +g ` U ) y ) = ( y ( +g ` U ) x ) /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) ) |
80 |
78 79
|
bitri |
|- ( ( U e. Abel /\ ( F ` .0. ) = ( 0g ` U ) ) <-> ( A. x e. ( Base ` U ) A. y e. ( Base ` U ) ( x ( +g ` U ) y ) = ( y ( +g ` U ) x ) /\ ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) ) |
81 |
75 80
|
sylibr |
|- ( ph -> ( U e. Abel /\ ( F ` .0. ) = ( 0g ` U ) ) ) |