| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgr3v.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | frgr3v.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 4 | 3 | eltp | ⊢ ( 𝑥  ∈  { 𝐴 ,  𝐵 ,  𝐶 }  ↔  ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵  ∨  𝑥  =  𝐶 ) ) | 
						
							| 5 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 6 | 5 | eltp | ⊢ ( 𝑦  ∈  { 𝐴 ,  𝐵 ,  𝐶 }  ↔  ( 𝑦  =  𝐴  ∨  𝑦  =  𝐵  ∨  𝑦  =  𝐶 ) ) | 
						
							| 7 |  | eqidd | ⊢ ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐴  =  𝐴 ) | 
						
							| 8 | 7 | a1i | ⊢ ( { { 𝐴 ,  𝐴 } ,  { 𝐴 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐴  =  𝐴 ) ) | 
						
							| 9 | 8 | a1i13 | ⊢ ( 𝑦  =  𝐴  →  ( { { 𝐴 ,  𝐴 } ,  { 𝐴 ,  𝐵 } }  ⊆  𝐸  →  ( { { 𝐴 ,  𝐴 } ,  { 𝐴 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐴  =  𝐴 ) ) ) ) | 
						
							| 10 |  | preq1 | ⊢ ( 𝑦  =  𝐴  →  { 𝑦 ,  𝐴 }  =  { 𝐴 ,  𝐴 } ) | 
						
							| 11 |  | preq1 | ⊢ ( 𝑦  =  𝐴  →  { 𝑦 ,  𝐵 }  =  { 𝐴 ,  𝐵 } ) | 
						
							| 12 | 10 11 | preq12d | ⊢ ( 𝑦  =  𝐴  →  { { 𝑦 ,  𝐴 } ,  { 𝑦 ,  𝐵 } }  =  { { 𝐴 ,  𝐴 } ,  { 𝐴 ,  𝐵 } } ) | 
						
							| 13 | 12 | sseq1d | ⊢ ( 𝑦  =  𝐴  →  ( { { 𝑦 ,  𝐴 } ,  { 𝑦 ,  𝐵 } }  ⊆  𝐸  ↔  { { 𝐴 ,  𝐴 } ,  { 𝐴 ,  𝐵 } }  ⊆  𝐸 ) ) | 
						
							| 14 |  | eqeq2 | ⊢ ( 𝑦  =  𝐴  →  ( 𝐴  =  𝑦  ↔  𝐴  =  𝐴 ) ) | 
						
							| 15 | 14 | imbi2d | ⊢ ( 𝑦  =  𝐴  →  ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐴  =  𝑦 )  ↔  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐴  =  𝐴 ) ) ) | 
						
							| 16 | 15 | imbi2d | ⊢ ( 𝑦  =  𝐴  →  ( ( { { 𝐴 ,  𝐴 } ,  { 𝐴 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐴  =  𝑦 ) )  ↔  ( { { 𝐴 ,  𝐴 } ,  { 𝐴 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐴  =  𝐴 ) ) ) ) | 
						
							| 17 | 9 13 16 | 3imtr4d | ⊢ ( 𝑦  =  𝐴  →  ( { { 𝑦 ,  𝐴 } ,  { 𝑦 ,  𝐵 } }  ⊆  𝐸  →  ( { { 𝐴 ,  𝐴 } ,  { 𝐴 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐴  =  𝑦 ) ) ) ) | 
						
							| 18 |  | prex | ⊢ { 𝐴 ,  𝐴 }  ∈  V | 
						
							| 19 |  | prex | ⊢ { 𝐴 ,  𝐵 }  ∈  V | 
						
							| 20 | 18 19 | prss | ⊢ ( ( { 𝐴 ,  𝐴 }  ∈  𝐸  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  ↔  { { 𝐴 ,  𝐴 } ,  { 𝐴 ,  𝐵 } }  ⊆  𝐸 ) | 
						
							| 21 | 2 | usgredgne | ⊢ ( ( 𝐺  ∈  USGraph  ∧  { 𝐴 ,  𝐴 }  ∈  𝐸 )  →  𝐴  ≠  𝐴 ) | 
						
							| 22 | 21 | adantll | ⊢ ( ( ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph )  ∧  { 𝐴 ,  𝐴 }  ∈  𝐸 )  →  𝐴  ≠  𝐴 ) | 
						
							| 23 |  | df-ne | ⊢ ( 𝐴  ≠  𝐴  ↔  ¬  𝐴  =  𝐴 ) | 
						
							| 24 |  | eqid | ⊢ 𝐴  =  𝐴 | 
						
							| 25 | 24 | pm2.24i | ⊢ ( ¬  𝐴  =  𝐴  →  𝐴  =  𝐵 ) | 
						
							| 26 | 23 25 | sylbi | ⊢ ( 𝐴  ≠  𝐴  →  𝐴  =  𝐵 ) | 
						
							| 27 | 22 26 | syl | ⊢ ( ( ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph )  ∧  { 𝐴 ,  𝐴 }  ∈  𝐸 )  →  𝐴  =  𝐵 ) | 
						
							| 28 | 27 | expcom | ⊢ ( { 𝐴 ,  𝐴 }  ∈  𝐸  →  ( ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph )  →  𝐴  =  𝐵 ) ) | 
						
							| 29 | 28 | adantr | ⊢ ( ( { 𝐴 ,  𝐴 }  ∈  𝐸  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  ( ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph )  →  𝐴  =  𝐵 ) ) | 
						
							| 30 | 20 29 | sylbir | ⊢ ( { { 𝐴 ,  𝐴 } ,  { 𝐴 ,  𝐵 } }  ⊆  𝐸  →  ( ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph )  →  𝐴  =  𝐵 ) ) | 
						
							| 31 | 30 | com12 | ⊢ ( ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph )  →  ( { { 𝐴 ,  𝐴 } ,  { 𝐴 ,  𝐵 } }  ⊆  𝐸  →  𝐴  =  𝐵 ) ) | 
						
							| 32 | 31 | 3ad2ant3 | ⊢ ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  ( { { 𝐴 ,  𝐴 } ,  { 𝐴 ,  𝐵 } }  ⊆  𝐸  →  𝐴  =  𝐵 ) ) | 
						
							| 33 | 32 | com12 | ⊢ ( { { 𝐴 ,  𝐴 } ,  { 𝐴 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐴  =  𝐵 ) ) | 
						
							| 34 | 33 | 2a1i | ⊢ ( 𝑦  =  𝐵  →  ( { { 𝐵 ,  𝐴 } ,  { 𝐵 ,  𝐵 } }  ⊆  𝐸  →  ( { { 𝐴 ,  𝐴 } ,  { 𝐴 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐴  =  𝐵 ) ) ) ) | 
						
							| 35 |  | preq1 | ⊢ ( 𝑦  =  𝐵  →  { 𝑦 ,  𝐴 }  =  { 𝐵 ,  𝐴 } ) | 
						
							| 36 |  | preq1 | ⊢ ( 𝑦  =  𝐵  →  { 𝑦 ,  𝐵 }  =  { 𝐵 ,  𝐵 } ) | 
						
							| 37 | 35 36 | preq12d | ⊢ ( 𝑦  =  𝐵  →  { { 𝑦 ,  𝐴 } ,  { 𝑦 ,  𝐵 } }  =  { { 𝐵 ,  𝐴 } ,  { 𝐵 ,  𝐵 } } ) | 
						
							| 38 | 37 | sseq1d | ⊢ ( 𝑦  =  𝐵  →  ( { { 𝑦 ,  𝐴 } ,  { 𝑦 ,  𝐵 } }  ⊆  𝐸  ↔  { { 𝐵 ,  𝐴 } ,  { 𝐵 ,  𝐵 } }  ⊆  𝐸 ) ) | 
						
							| 39 |  | eqeq2 | ⊢ ( 𝑦  =  𝐵  →  ( 𝐴  =  𝑦  ↔  𝐴  =  𝐵 ) ) | 
						
							| 40 | 39 | imbi2d | ⊢ ( 𝑦  =  𝐵  →  ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐴  =  𝑦 )  ↔  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐴  =  𝐵 ) ) ) | 
						
							| 41 | 40 | imbi2d | ⊢ ( 𝑦  =  𝐵  →  ( ( { { 𝐴 ,  𝐴 } ,  { 𝐴 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐴  =  𝑦 ) )  ↔  ( { { 𝐴 ,  𝐴 } ,  { 𝐴 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐴  =  𝐵 ) ) ) ) | 
						
							| 42 | 34 38 41 | 3imtr4d | ⊢ ( 𝑦  =  𝐵  →  ( { { 𝑦 ,  𝐴 } ,  { 𝑦 ,  𝐵 } }  ⊆  𝐸  →  ( { { 𝐴 ,  𝐴 } ,  { 𝐴 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐴  =  𝑦 ) ) ) ) | 
						
							| 43 | 24 | pm2.24i | ⊢ ( ¬  𝐴  =  𝐴  →  𝐴  =  𝐶 ) | 
						
							| 44 | 23 43 | sylbi | ⊢ ( 𝐴  ≠  𝐴  →  𝐴  =  𝐶 ) | 
						
							| 45 | 22 44 | syl | ⊢ ( ( ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph )  ∧  { 𝐴 ,  𝐴 }  ∈  𝐸 )  →  𝐴  =  𝐶 ) | 
						
							| 46 | 45 | expcom | ⊢ ( { 𝐴 ,  𝐴 }  ∈  𝐸  →  ( ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph )  →  𝐴  =  𝐶 ) ) | 
						
							| 47 | 46 | adantr | ⊢ ( ( { 𝐴 ,  𝐴 }  ∈  𝐸  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  ( ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph )  →  𝐴  =  𝐶 ) ) | 
						
							| 48 | 20 47 | sylbir | ⊢ ( { { 𝐴 ,  𝐴 } ,  { 𝐴 ,  𝐵 } }  ⊆  𝐸  →  ( ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph )  →  𝐴  =  𝐶 ) ) | 
						
							| 49 | 48 | com12 | ⊢ ( ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph )  →  ( { { 𝐴 ,  𝐴 } ,  { 𝐴 ,  𝐵 } }  ⊆  𝐸  →  𝐴  =  𝐶 ) ) | 
						
							| 50 | 49 | 3ad2ant3 | ⊢ ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  ( { { 𝐴 ,  𝐴 } ,  { 𝐴 ,  𝐵 } }  ⊆  𝐸  →  𝐴  =  𝐶 ) ) | 
						
							| 51 | 50 | com12 | ⊢ ( { { 𝐴 ,  𝐴 } ,  { 𝐴 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐴  =  𝐶 ) ) | 
						
							| 52 | 51 | 2a1i | ⊢ ( 𝑦  =  𝐶  →  ( { { 𝐶 ,  𝐴 } ,  { 𝐶 ,  𝐵 } }  ⊆  𝐸  →  ( { { 𝐴 ,  𝐴 } ,  { 𝐴 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐴  =  𝐶 ) ) ) ) | 
						
							| 53 |  | preq1 | ⊢ ( 𝑦  =  𝐶  →  { 𝑦 ,  𝐴 }  =  { 𝐶 ,  𝐴 } ) | 
						
							| 54 |  | preq1 | ⊢ ( 𝑦  =  𝐶  →  { 𝑦 ,  𝐵 }  =  { 𝐶 ,  𝐵 } ) | 
						
							| 55 | 53 54 | preq12d | ⊢ ( 𝑦  =  𝐶  →  { { 𝑦 ,  𝐴 } ,  { 𝑦 ,  𝐵 } }  =  { { 𝐶 ,  𝐴 } ,  { 𝐶 ,  𝐵 } } ) | 
						
							| 56 | 55 | sseq1d | ⊢ ( 𝑦  =  𝐶  →  ( { { 𝑦 ,  𝐴 } ,  { 𝑦 ,  𝐵 } }  ⊆  𝐸  ↔  { { 𝐶 ,  𝐴 } ,  { 𝐶 ,  𝐵 } }  ⊆  𝐸 ) ) | 
						
							| 57 |  | eqeq2 | ⊢ ( 𝑦  =  𝐶  →  ( 𝐴  =  𝑦  ↔  𝐴  =  𝐶 ) ) | 
						
							| 58 | 57 | imbi2d | ⊢ ( 𝑦  =  𝐶  →  ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐴  =  𝑦 )  ↔  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐴  =  𝐶 ) ) ) | 
						
							| 59 | 58 | imbi2d | ⊢ ( 𝑦  =  𝐶  →  ( ( { { 𝐴 ,  𝐴 } ,  { 𝐴 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐴  =  𝑦 ) )  ↔  ( { { 𝐴 ,  𝐴 } ,  { 𝐴 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐴  =  𝐶 ) ) ) ) | 
						
							| 60 | 52 56 59 | 3imtr4d | ⊢ ( 𝑦  =  𝐶  →  ( { { 𝑦 ,  𝐴 } ,  { 𝑦 ,  𝐵 } }  ⊆  𝐸  →  ( { { 𝐴 ,  𝐴 } ,  { 𝐴 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐴  =  𝑦 ) ) ) ) | 
						
							| 61 | 17 42 60 | 3jaoi | ⊢ ( ( 𝑦  =  𝐴  ∨  𝑦  =  𝐵  ∨  𝑦  =  𝐶 )  →  ( { { 𝑦 ,  𝐴 } ,  { 𝑦 ,  𝐵 } }  ⊆  𝐸  →  ( { { 𝐴 ,  𝐴 } ,  { 𝐴 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐴  =  𝑦 ) ) ) ) | 
						
							| 62 |  | preq1 | ⊢ ( 𝑥  =  𝐴  →  { 𝑥 ,  𝐴 }  =  { 𝐴 ,  𝐴 } ) | 
						
							| 63 |  | preq1 | ⊢ ( 𝑥  =  𝐴  →  { 𝑥 ,  𝐵 }  =  { 𝐴 ,  𝐵 } ) | 
						
							| 64 | 62 63 | preq12d | ⊢ ( 𝑥  =  𝐴  →  { { 𝑥 ,  𝐴 } ,  { 𝑥 ,  𝐵 } }  =  { { 𝐴 ,  𝐴 } ,  { 𝐴 ,  𝐵 } } ) | 
						
							| 65 | 64 | sseq1d | ⊢ ( 𝑥  =  𝐴  →  ( { { 𝑥 ,  𝐴 } ,  { 𝑥 ,  𝐵 } }  ⊆  𝐸  ↔  { { 𝐴 ,  𝐴 } ,  { 𝐴 ,  𝐵 } }  ⊆  𝐸 ) ) | 
						
							| 66 |  | eqeq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥  =  𝑦  ↔  𝐴  =  𝑦 ) ) | 
						
							| 67 | 66 | imbi2d | ⊢ ( 𝑥  =  𝐴  →  ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝑥  =  𝑦 )  ↔  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐴  =  𝑦 ) ) ) | 
						
							| 68 | 65 67 | imbi12d | ⊢ ( 𝑥  =  𝐴  →  ( ( { { 𝑥 ,  𝐴 } ,  { 𝑥 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝑥  =  𝑦 ) )  ↔  ( { { 𝐴 ,  𝐴 } ,  { 𝐴 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐴  =  𝑦 ) ) ) ) | 
						
							| 69 | 68 | imbi2d | ⊢ ( 𝑥  =  𝐴  →  ( ( { { 𝑦 ,  𝐴 } ,  { 𝑦 ,  𝐵 } }  ⊆  𝐸  →  ( { { 𝑥 ,  𝐴 } ,  { 𝑥 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝑥  =  𝑦 ) ) )  ↔  ( { { 𝑦 ,  𝐴 } ,  { 𝑦 ,  𝐵 } }  ⊆  𝐸  →  ( { { 𝐴 ,  𝐴 } ,  { 𝐴 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐴  =  𝑦 ) ) ) ) ) | 
						
							| 70 | 61 69 | imbitrrid | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑦  =  𝐴  ∨  𝑦  =  𝐵  ∨  𝑦  =  𝐶 )  →  ( { { 𝑦 ,  𝐴 } ,  { 𝑦 ,  𝐵 } }  ⊆  𝐸  →  ( { { 𝑥 ,  𝐴 } ,  { 𝑥 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝑥  =  𝑦 ) ) ) ) ) | 
						
							| 71 |  | prex | ⊢ { 𝐵 ,  𝐴 }  ∈  V | 
						
							| 72 |  | prex | ⊢ { 𝐵 ,  𝐵 }  ∈  V | 
						
							| 73 | 71 72 | prss | ⊢ ( ( { 𝐵 ,  𝐴 }  ∈  𝐸  ∧  { 𝐵 ,  𝐵 }  ∈  𝐸 )  ↔  { { 𝐵 ,  𝐴 } ,  { 𝐵 ,  𝐵 } }  ⊆  𝐸 ) | 
						
							| 74 | 2 | usgredgne | ⊢ ( ( 𝐺  ∈  USGraph  ∧  { 𝐵 ,  𝐵 }  ∈  𝐸 )  →  𝐵  ≠  𝐵 ) | 
						
							| 75 | 74 | adantll | ⊢ ( ( ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph )  ∧  { 𝐵 ,  𝐵 }  ∈  𝐸 )  →  𝐵  ≠  𝐵 ) | 
						
							| 76 |  | df-ne | ⊢ ( 𝐵  ≠  𝐵  ↔  ¬  𝐵  =  𝐵 ) | 
						
							| 77 |  | eqid | ⊢ 𝐵  =  𝐵 | 
						
							| 78 | 77 | pm2.24i | ⊢ ( ¬  𝐵  =  𝐵  →  𝐵  =  𝐴 ) | 
						
							| 79 | 76 78 | sylbi | ⊢ ( 𝐵  ≠  𝐵  →  𝐵  =  𝐴 ) | 
						
							| 80 | 75 79 | syl | ⊢ ( ( ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph )  ∧  { 𝐵 ,  𝐵 }  ∈  𝐸 )  →  𝐵  =  𝐴 ) | 
						
							| 81 | 80 | expcom | ⊢ ( { 𝐵 ,  𝐵 }  ∈  𝐸  →  ( ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph )  →  𝐵  =  𝐴 ) ) | 
						
							| 82 | 81 | adantl | ⊢ ( ( { 𝐵 ,  𝐴 }  ∈  𝐸  ∧  { 𝐵 ,  𝐵 }  ∈  𝐸 )  →  ( ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph )  →  𝐵  =  𝐴 ) ) | 
						
							| 83 | 73 82 | sylbir | ⊢ ( { { 𝐵 ,  𝐴 } ,  { 𝐵 ,  𝐵 } }  ⊆  𝐸  →  ( ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph )  →  𝐵  =  𝐴 ) ) | 
						
							| 84 | 83 | com12 | ⊢ ( ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph )  →  ( { { 𝐵 ,  𝐴 } ,  { 𝐵 ,  𝐵 } }  ⊆  𝐸  →  𝐵  =  𝐴 ) ) | 
						
							| 85 | 84 | 3ad2ant3 | ⊢ ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  ( { { 𝐵 ,  𝐴 } ,  { 𝐵 ,  𝐵 } }  ⊆  𝐸  →  𝐵  =  𝐴 ) ) | 
						
							| 86 | 85 | com12 | ⊢ ( { { 𝐵 ,  𝐴 } ,  { 𝐵 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐵  =  𝐴 ) ) | 
						
							| 87 | 86 | 2a1i | ⊢ ( 𝑦  =  𝐴  →  ( { { 𝐴 ,  𝐴 } ,  { 𝐴 ,  𝐵 } }  ⊆  𝐸  →  ( { { 𝐵 ,  𝐴 } ,  { 𝐵 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐵  =  𝐴 ) ) ) ) | 
						
							| 88 |  | eqeq2 | ⊢ ( 𝑦  =  𝐴  →  ( 𝐵  =  𝑦  ↔  𝐵  =  𝐴 ) ) | 
						
							| 89 | 88 | imbi2d | ⊢ ( 𝑦  =  𝐴  →  ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐵  =  𝑦 )  ↔  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐵  =  𝐴 ) ) ) | 
						
							| 90 | 89 | imbi2d | ⊢ ( 𝑦  =  𝐴  →  ( ( { { 𝐵 ,  𝐴 } ,  { 𝐵 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐵  =  𝑦 ) )  ↔  ( { { 𝐵 ,  𝐴 } ,  { 𝐵 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐵  =  𝐴 ) ) ) ) | 
						
							| 91 | 87 13 90 | 3imtr4d | ⊢ ( 𝑦  =  𝐴  →  ( { { 𝑦 ,  𝐴 } ,  { 𝑦 ,  𝐵 } }  ⊆  𝐸  →  ( { { 𝐵 ,  𝐴 } ,  { 𝐵 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐵  =  𝑦 ) ) ) ) | 
						
							| 92 |  | eqidd | ⊢ ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐵  =  𝐵 ) | 
						
							| 93 | 92 | a1i | ⊢ ( { { 𝐵 ,  𝐴 } ,  { 𝐵 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐵  =  𝐵 ) ) | 
						
							| 94 | 93 | a1i13 | ⊢ ( 𝑦  =  𝐵  →  ( { { 𝐵 ,  𝐴 } ,  { 𝐵 ,  𝐵 } }  ⊆  𝐸  →  ( { { 𝐵 ,  𝐴 } ,  { 𝐵 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐵  =  𝐵 ) ) ) ) | 
						
							| 95 |  | eqeq2 | ⊢ ( 𝑦  =  𝐵  →  ( 𝐵  =  𝑦  ↔  𝐵  =  𝐵 ) ) | 
						
							| 96 | 95 | imbi2d | ⊢ ( 𝑦  =  𝐵  →  ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐵  =  𝑦 )  ↔  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐵  =  𝐵 ) ) ) | 
						
							| 97 | 96 | imbi2d | ⊢ ( 𝑦  =  𝐵  →  ( ( { { 𝐵 ,  𝐴 } ,  { 𝐵 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐵  =  𝑦 ) )  ↔  ( { { 𝐵 ,  𝐴 } ,  { 𝐵 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐵  =  𝐵 ) ) ) ) | 
						
							| 98 | 94 38 97 | 3imtr4d | ⊢ ( 𝑦  =  𝐵  →  ( { { 𝑦 ,  𝐴 } ,  { 𝑦 ,  𝐵 } }  ⊆  𝐸  →  ( { { 𝐵 ,  𝐴 } ,  { 𝐵 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐵  =  𝑦 ) ) ) ) | 
						
							| 99 | 77 | pm2.24i | ⊢ ( ¬  𝐵  =  𝐵  →  𝐵  =  𝐶 ) | 
						
							| 100 | 76 99 | sylbi | ⊢ ( 𝐵  ≠  𝐵  →  𝐵  =  𝐶 ) | 
						
							| 101 | 75 100 | syl | ⊢ ( ( ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph )  ∧  { 𝐵 ,  𝐵 }  ∈  𝐸 )  →  𝐵  =  𝐶 ) | 
						
							| 102 | 101 | expcom | ⊢ ( { 𝐵 ,  𝐵 }  ∈  𝐸  →  ( ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph )  →  𝐵  =  𝐶 ) ) | 
						
							| 103 | 102 | adantl | ⊢ ( ( { 𝐵 ,  𝐴 }  ∈  𝐸  ∧  { 𝐵 ,  𝐵 }  ∈  𝐸 )  →  ( ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph )  →  𝐵  =  𝐶 ) ) | 
						
							| 104 | 73 103 | sylbir | ⊢ ( { { 𝐵 ,  𝐴 } ,  { 𝐵 ,  𝐵 } }  ⊆  𝐸  →  ( ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph )  →  𝐵  =  𝐶 ) ) | 
						
							| 105 | 104 | com12 | ⊢ ( ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph )  →  ( { { 𝐵 ,  𝐴 } ,  { 𝐵 ,  𝐵 } }  ⊆  𝐸  →  𝐵  =  𝐶 ) ) | 
						
							| 106 | 105 | 3ad2ant3 | ⊢ ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  ( { { 𝐵 ,  𝐴 } ,  { 𝐵 ,  𝐵 } }  ⊆  𝐸  →  𝐵  =  𝐶 ) ) | 
						
							| 107 | 106 | com12 | ⊢ ( { { 𝐵 ,  𝐴 } ,  { 𝐵 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐵  =  𝐶 ) ) | 
						
							| 108 | 107 | 2a1i | ⊢ ( 𝑦  =  𝐶  →  ( { { 𝐶 ,  𝐴 } ,  { 𝐶 ,  𝐵 } }  ⊆  𝐸  →  ( { { 𝐵 ,  𝐴 } ,  { 𝐵 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐵  =  𝐶 ) ) ) ) | 
						
							| 109 |  | eqeq2 | ⊢ ( 𝑦  =  𝐶  →  ( 𝐵  =  𝑦  ↔  𝐵  =  𝐶 ) ) | 
						
							| 110 | 109 | imbi2d | ⊢ ( 𝑦  =  𝐶  →  ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐵  =  𝑦 )  ↔  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐵  =  𝐶 ) ) ) | 
						
							| 111 | 110 | imbi2d | ⊢ ( 𝑦  =  𝐶  →  ( ( { { 𝐵 ,  𝐴 } ,  { 𝐵 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐵  =  𝑦 ) )  ↔  ( { { 𝐵 ,  𝐴 } ,  { 𝐵 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐵  =  𝐶 ) ) ) ) | 
						
							| 112 | 108 56 111 | 3imtr4d | ⊢ ( 𝑦  =  𝐶  →  ( { { 𝑦 ,  𝐴 } ,  { 𝑦 ,  𝐵 } }  ⊆  𝐸  →  ( { { 𝐵 ,  𝐴 } ,  { 𝐵 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐵  =  𝑦 ) ) ) ) | 
						
							| 113 | 91 98 112 | 3jaoi | ⊢ ( ( 𝑦  =  𝐴  ∨  𝑦  =  𝐵  ∨  𝑦  =  𝐶 )  →  ( { { 𝑦 ,  𝐴 } ,  { 𝑦 ,  𝐵 } }  ⊆  𝐸  →  ( { { 𝐵 ,  𝐴 } ,  { 𝐵 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐵  =  𝑦 ) ) ) ) | 
						
							| 114 |  | preq1 | ⊢ ( 𝑥  =  𝐵  →  { 𝑥 ,  𝐴 }  =  { 𝐵 ,  𝐴 } ) | 
						
							| 115 |  | preq1 | ⊢ ( 𝑥  =  𝐵  →  { 𝑥 ,  𝐵 }  =  { 𝐵 ,  𝐵 } ) | 
						
							| 116 | 114 115 | preq12d | ⊢ ( 𝑥  =  𝐵  →  { { 𝑥 ,  𝐴 } ,  { 𝑥 ,  𝐵 } }  =  { { 𝐵 ,  𝐴 } ,  { 𝐵 ,  𝐵 } } ) | 
						
							| 117 | 116 | sseq1d | ⊢ ( 𝑥  =  𝐵  →  ( { { 𝑥 ,  𝐴 } ,  { 𝑥 ,  𝐵 } }  ⊆  𝐸  ↔  { { 𝐵 ,  𝐴 } ,  { 𝐵 ,  𝐵 } }  ⊆  𝐸 ) ) | 
						
							| 118 |  | eqeq1 | ⊢ ( 𝑥  =  𝐵  →  ( 𝑥  =  𝑦  ↔  𝐵  =  𝑦 ) ) | 
						
							| 119 | 118 | imbi2d | ⊢ ( 𝑥  =  𝐵  →  ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝑥  =  𝑦 )  ↔  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐵  =  𝑦 ) ) ) | 
						
							| 120 | 117 119 | imbi12d | ⊢ ( 𝑥  =  𝐵  →  ( ( { { 𝑥 ,  𝐴 } ,  { 𝑥 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝑥  =  𝑦 ) )  ↔  ( { { 𝐵 ,  𝐴 } ,  { 𝐵 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐵  =  𝑦 ) ) ) ) | 
						
							| 121 | 120 | imbi2d | ⊢ ( 𝑥  =  𝐵  →  ( ( { { 𝑦 ,  𝐴 } ,  { 𝑦 ,  𝐵 } }  ⊆  𝐸  →  ( { { 𝑥 ,  𝐴 } ,  { 𝑥 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝑥  =  𝑦 ) ) )  ↔  ( { { 𝑦 ,  𝐴 } ,  { 𝑦 ,  𝐵 } }  ⊆  𝐸  →  ( { { 𝐵 ,  𝐴 } ,  { 𝐵 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐵  =  𝑦 ) ) ) ) ) | 
						
							| 122 | 113 121 | imbitrrid | ⊢ ( 𝑥  =  𝐵  →  ( ( 𝑦  =  𝐴  ∨  𝑦  =  𝐵  ∨  𝑦  =  𝐶 )  →  ( { { 𝑦 ,  𝐴 } ,  { 𝑦 ,  𝐵 } }  ⊆  𝐸  →  ( { { 𝑥 ,  𝐴 } ,  { 𝑥 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝑥  =  𝑦 ) ) ) ) ) | 
						
							| 123 | 24 | pm2.24i | ⊢ ( ¬  𝐴  =  𝐴  →  𝐶  =  𝐴 ) | 
						
							| 124 | 23 123 | sylbi | ⊢ ( 𝐴  ≠  𝐴  →  𝐶  =  𝐴 ) | 
						
							| 125 | 22 124 | syl | ⊢ ( ( ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph )  ∧  { 𝐴 ,  𝐴 }  ∈  𝐸 )  →  𝐶  =  𝐴 ) | 
						
							| 126 | 125 | expcom | ⊢ ( { 𝐴 ,  𝐴 }  ∈  𝐸  →  ( ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph )  →  𝐶  =  𝐴 ) ) | 
						
							| 127 | 126 | adantr | ⊢ ( ( { 𝐴 ,  𝐴 }  ∈  𝐸  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  ( ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph )  →  𝐶  =  𝐴 ) ) | 
						
							| 128 | 20 127 | sylbir | ⊢ ( { { 𝐴 ,  𝐴 } ,  { 𝐴 ,  𝐵 } }  ⊆  𝐸  →  ( ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph )  →  𝐶  =  𝐴 ) ) | 
						
							| 129 | 128 | com12 | ⊢ ( ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph )  →  ( { { 𝐴 ,  𝐴 } ,  { 𝐴 ,  𝐵 } }  ⊆  𝐸  →  𝐶  =  𝐴 ) ) | 
						
							| 130 | 129 | 3ad2ant3 | ⊢ ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  ( { { 𝐴 ,  𝐴 } ,  { 𝐴 ,  𝐵 } }  ⊆  𝐸  →  𝐶  =  𝐴 ) ) | 
						
							| 131 | 130 | com12 | ⊢ ( { { 𝐴 ,  𝐴 } ,  { 𝐴 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐶  =  𝐴 ) ) | 
						
							| 132 | 131 | a1i13 | ⊢ ( 𝑦  =  𝐴  →  ( { { 𝐴 ,  𝐴 } ,  { 𝐴 ,  𝐵 } }  ⊆  𝐸  →  ( { { 𝐶 ,  𝐴 } ,  { 𝐶 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐶  =  𝐴 ) ) ) ) | 
						
							| 133 |  | eqeq2 | ⊢ ( 𝑦  =  𝐴  →  ( 𝐶  =  𝑦  ↔  𝐶  =  𝐴 ) ) | 
						
							| 134 | 133 | imbi2d | ⊢ ( 𝑦  =  𝐴  →  ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐶  =  𝑦 )  ↔  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐶  =  𝐴 ) ) ) | 
						
							| 135 | 134 | imbi2d | ⊢ ( 𝑦  =  𝐴  →  ( ( { { 𝐶 ,  𝐴 } ,  { 𝐶 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐶  =  𝑦 ) )  ↔  ( { { 𝐶 ,  𝐴 } ,  { 𝐶 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐶  =  𝐴 ) ) ) ) | 
						
							| 136 | 132 13 135 | 3imtr4d | ⊢ ( 𝑦  =  𝐴  →  ( { { 𝑦 ,  𝐴 } ,  { 𝑦 ,  𝐵 } }  ⊆  𝐸  →  ( { { 𝐶 ,  𝐴 } ,  { 𝐶 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐶  =  𝑦 ) ) ) ) | 
						
							| 137 |  | pm2.21 | ⊢ ( ¬  𝐵  =  𝐵  →  ( 𝐵  =  𝐵  →  ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  →  𝐶  =  𝐵 ) ) ) | 
						
							| 138 | 76 137 | sylbi | ⊢ ( 𝐵  ≠  𝐵  →  ( 𝐵  =  𝐵  →  ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  →  𝐶  =  𝐵 ) ) ) | 
						
							| 139 | 75 77 138 | mpisyl | ⊢ ( ( ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph )  ∧  { 𝐵 ,  𝐵 }  ∈  𝐸 )  →  ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  →  𝐶  =  𝐵 ) ) | 
						
							| 140 | 139 | expcom | ⊢ ( { 𝐵 ,  𝐵 }  ∈  𝐸  →  ( ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph )  →  ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  →  𝐶  =  𝐵 ) ) ) | 
						
							| 141 | 140 | adantl | ⊢ ( ( { 𝐵 ,  𝐴 }  ∈  𝐸  ∧  { 𝐵 ,  𝐵 }  ∈  𝐸 )  →  ( ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph )  →  ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  →  𝐶  =  𝐵 ) ) ) | 
						
							| 142 | 73 141 | sylbir | ⊢ ( { { 𝐵 ,  𝐴 } ,  { 𝐵 ,  𝐵 } }  ⊆  𝐸  →  ( ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph )  →  ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  →  𝐶  =  𝐵 ) ) ) | 
						
							| 143 | 142 | com13 | ⊢ ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  →  ( ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph )  →  ( { { 𝐵 ,  𝐴 } ,  { 𝐵 ,  𝐵 } }  ⊆  𝐸  →  𝐶  =  𝐵 ) ) ) | 
						
							| 144 | 143 | a1d | ⊢ ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  →  ( ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  →  ( ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph )  →  ( { { 𝐵 ,  𝐴 } ,  { 𝐵 ,  𝐵 } }  ⊆  𝐸  →  𝐶  =  𝐵 ) ) ) ) | 
						
							| 145 | 144 | 3imp | ⊢ ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  ( { { 𝐵 ,  𝐴 } ,  { 𝐵 ,  𝐵 } }  ⊆  𝐸  →  𝐶  =  𝐵 ) ) | 
						
							| 146 | 145 | com12 | ⊢ ( { { 𝐵 ,  𝐴 } ,  { 𝐵 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐶  =  𝐵 ) ) | 
						
							| 147 | 146 | a1i13 | ⊢ ( 𝑦  =  𝐵  →  ( { { 𝐵 ,  𝐴 } ,  { 𝐵 ,  𝐵 } }  ⊆  𝐸  →  ( { { 𝐶 ,  𝐴 } ,  { 𝐶 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐶  =  𝐵 ) ) ) ) | 
						
							| 148 |  | eqeq2 | ⊢ ( 𝑦  =  𝐵  →  ( 𝐶  =  𝑦  ↔  𝐶  =  𝐵 ) ) | 
						
							| 149 | 148 | imbi2d | ⊢ ( 𝑦  =  𝐵  →  ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐶  =  𝑦 )  ↔  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐶  =  𝐵 ) ) ) | 
						
							| 150 | 149 | imbi2d | ⊢ ( 𝑦  =  𝐵  →  ( ( { { 𝐶 ,  𝐴 } ,  { 𝐶 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐶  =  𝑦 ) )  ↔  ( { { 𝐶 ,  𝐴 } ,  { 𝐶 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐶  =  𝐵 ) ) ) ) | 
						
							| 151 | 147 38 150 | 3imtr4d | ⊢ ( 𝑦  =  𝐵  →  ( { { 𝑦 ,  𝐴 } ,  { 𝑦 ,  𝐵 } }  ⊆  𝐸  →  ( { { 𝐶 ,  𝐴 } ,  { 𝐶 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐶  =  𝑦 ) ) ) ) | 
						
							| 152 |  | eqidd | ⊢ ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐶  =  𝐶 ) | 
						
							| 153 | 152 | a1i | ⊢ ( { { 𝐶 ,  𝐴 } ,  { 𝐶 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐶  =  𝐶 ) ) | 
						
							| 154 | 153 | a1i13 | ⊢ ( 𝑦  =  𝐶  →  ( { { 𝐶 ,  𝐴 } ,  { 𝐶 ,  𝐵 } }  ⊆  𝐸  →  ( { { 𝐶 ,  𝐴 } ,  { 𝐶 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐶  =  𝐶 ) ) ) ) | 
						
							| 155 |  | eqeq2 | ⊢ ( 𝑦  =  𝐶  →  ( 𝐶  =  𝑦  ↔  𝐶  =  𝐶 ) ) | 
						
							| 156 | 155 | imbi2d | ⊢ ( 𝑦  =  𝐶  →  ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐶  =  𝑦 )  ↔  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐶  =  𝐶 ) ) ) | 
						
							| 157 | 156 | imbi2d | ⊢ ( 𝑦  =  𝐶  →  ( ( { { 𝐶 ,  𝐴 } ,  { 𝐶 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐶  =  𝑦 ) )  ↔  ( { { 𝐶 ,  𝐴 } ,  { 𝐶 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐶  =  𝐶 ) ) ) ) | 
						
							| 158 | 154 56 157 | 3imtr4d | ⊢ ( 𝑦  =  𝐶  →  ( { { 𝑦 ,  𝐴 } ,  { 𝑦 ,  𝐵 } }  ⊆  𝐸  →  ( { { 𝐶 ,  𝐴 } ,  { 𝐶 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐶  =  𝑦 ) ) ) ) | 
						
							| 159 | 136 151 158 | 3jaoi | ⊢ ( ( 𝑦  =  𝐴  ∨  𝑦  =  𝐵  ∨  𝑦  =  𝐶 )  →  ( { { 𝑦 ,  𝐴 } ,  { 𝑦 ,  𝐵 } }  ⊆  𝐸  →  ( { { 𝐶 ,  𝐴 } ,  { 𝐶 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐶  =  𝑦 ) ) ) ) | 
						
							| 160 |  | preq1 | ⊢ ( 𝑥  =  𝐶  →  { 𝑥 ,  𝐴 }  =  { 𝐶 ,  𝐴 } ) | 
						
							| 161 |  | preq1 | ⊢ ( 𝑥  =  𝐶  →  { 𝑥 ,  𝐵 }  =  { 𝐶 ,  𝐵 } ) | 
						
							| 162 | 160 161 | preq12d | ⊢ ( 𝑥  =  𝐶  →  { { 𝑥 ,  𝐴 } ,  { 𝑥 ,  𝐵 } }  =  { { 𝐶 ,  𝐴 } ,  { 𝐶 ,  𝐵 } } ) | 
						
							| 163 | 162 | sseq1d | ⊢ ( 𝑥  =  𝐶  →  ( { { 𝑥 ,  𝐴 } ,  { 𝑥 ,  𝐵 } }  ⊆  𝐸  ↔  { { 𝐶 ,  𝐴 } ,  { 𝐶 ,  𝐵 } }  ⊆  𝐸 ) ) | 
						
							| 164 |  | eqeq1 | ⊢ ( 𝑥  =  𝐶  →  ( 𝑥  =  𝑦  ↔  𝐶  =  𝑦 ) ) | 
						
							| 165 | 164 | imbi2d | ⊢ ( 𝑥  =  𝐶  →  ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝑥  =  𝑦 )  ↔  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐶  =  𝑦 ) ) ) | 
						
							| 166 | 163 165 | imbi12d | ⊢ ( 𝑥  =  𝐶  →  ( ( { { 𝑥 ,  𝐴 } ,  { 𝑥 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝑥  =  𝑦 ) )  ↔  ( { { 𝐶 ,  𝐴 } ,  { 𝐶 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐶  =  𝑦 ) ) ) ) | 
						
							| 167 | 166 | imbi2d | ⊢ ( 𝑥  =  𝐶  →  ( ( { { 𝑦 ,  𝐴 } ,  { 𝑦 ,  𝐵 } }  ⊆  𝐸  →  ( { { 𝑥 ,  𝐴 } ,  { 𝑥 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝑥  =  𝑦 ) ) )  ↔  ( { { 𝑦 ,  𝐴 } ,  { 𝑦 ,  𝐵 } }  ⊆  𝐸  →  ( { { 𝐶 ,  𝐴 } ,  { 𝐶 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝐶  =  𝑦 ) ) ) ) ) | 
						
							| 168 | 159 167 | imbitrrid | ⊢ ( 𝑥  =  𝐶  →  ( ( 𝑦  =  𝐴  ∨  𝑦  =  𝐵  ∨  𝑦  =  𝐶 )  →  ( { { 𝑦 ,  𝐴 } ,  { 𝑦 ,  𝐵 } }  ⊆  𝐸  →  ( { { 𝑥 ,  𝐴 } ,  { 𝑥 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝑥  =  𝑦 ) ) ) ) ) | 
						
							| 169 | 70 122 168 | 3jaoi | ⊢ ( ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵  ∨  𝑥  =  𝐶 )  →  ( ( 𝑦  =  𝐴  ∨  𝑦  =  𝐵  ∨  𝑦  =  𝐶 )  →  ( { { 𝑦 ,  𝐴 } ,  { 𝑦 ,  𝐵 } }  ⊆  𝐸  →  ( { { 𝑥 ,  𝐴 } ,  { 𝑥 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝑥  =  𝑦 ) ) ) ) ) | 
						
							| 170 | 169 | com3l | ⊢ ( ( 𝑦  =  𝐴  ∨  𝑦  =  𝐵  ∨  𝑦  =  𝐶 )  →  ( { { 𝑦 ,  𝐴 } ,  { 𝑦 ,  𝐵 } }  ⊆  𝐸  →  ( ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵  ∨  𝑥  =  𝐶 )  →  ( { { 𝑥 ,  𝐴 } ,  { 𝑥 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝑥  =  𝑦 ) ) ) ) ) | 
						
							| 171 | 6 170 | sylbi | ⊢ ( 𝑦  ∈  { 𝐴 ,  𝐵 ,  𝐶 }  →  ( { { 𝑦 ,  𝐴 } ,  { 𝑦 ,  𝐵 } }  ⊆  𝐸  →  ( ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵  ∨  𝑥  =  𝐶 )  →  ( { { 𝑥 ,  𝐴 } ,  { 𝑥 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝑥  =  𝑦 ) ) ) ) ) | 
						
							| 172 | 171 | imp | ⊢ ( ( 𝑦  ∈  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  { { 𝑦 ,  𝐴 } ,  { 𝑦 ,  𝐵 } }  ⊆  𝐸 )  →  ( ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵  ∨  𝑥  =  𝐶 )  →  ( { { 𝑥 ,  𝐴 } ,  { 𝑥 ,  𝐵 } }  ⊆  𝐸  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝑥  =  𝑦 ) ) ) ) | 
						
							| 173 | 172 | com3l | ⊢ ( ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵  ∨  𝑥  =  𝐶 )  →  ( { { 𝑥 ,  𝐴 } ,  { 𝑥 ,  𝐵 } }  ⊆  𝐸  →  ( ( 𝑦  ∈  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  { { 𝑦 ,  𝐴 } ,  { 𝑦 ,  𝐵 } }  ⊆  𝐸 )  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝑥  =  𝑦 ) ) ) ) | 
						
							| 174 | 4 173 | sylbi | ⊢ ( 𝑥  ∈  { 𝐴 ,  𝐵 ,  𝐶 }  →  ( { { 𝑥 ,  𝐴 } ,  { 𝑥 ,  𝐵 } }  ⊆  𝐸  →  ( ( 𝑦  ∈  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  { { 𝑦 ,  𝐴 } ,  { 𝑦 ,  𝐵 } }  ⊆  𝐸 )  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝑥  =  𝑦 ) ) ) ) | 
						
							| 175 | 174 | imp31 | ⊢ ( ( ( 𝑥  ∈  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  { { 𝑥 ,  𝐴 } ,  { 𝑥 ,  𝐵 } }  ⊆  𝐸 )  ∧  ( 𝑦  ∈  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  { { 𝑦 ,  𝐴 } ,  { 𝑦 ,  𝐵 } }  ⊆  𝐸 ) )  →  ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  𝑥  =  𝑦 ) ) | 
						
							| 176 | 175 | com12 | ⊢ ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  ( ( ( 𝑥  ∈  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  { { 𝑥 ,  𝐴 } ,  { 𝑥 ,  𝐵 } }  ⊆  𝐸 )  ∧  ( 𝑦  ∈  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  { { 𝑦 ,  𝐴 } ,  { 𝑦 ,  𝐵 } }  ⊆  𝐸 ) )  →  𝑥  =  𝑦 ) ) | 
						
							| 177 | 176 | alrimivv | ⊢ ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐶  ∈  𝑍 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  ∀ 𝑥 ∀ 𝑦 ( ( ( 𝑥  ∈  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  { { 𝑥 ,  𝐴 } ,  { 𝑥 ,  𝐵 } }  ⊆  𝐸 )  ∧  ( 𝑦  ∈  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  { { 𝑦 ,  𝐴 } ,  { 𝑦 ,  𝐵 } }  ⊆  𝐸 ) )  →  𝑥  =  𝑦 ) ) |