Metamath Proof Explorer


Theorem fta

Description: The Fundamental Theorem of Algebra. Any polynomial with positive degree (i.e. non-constant) has a root. This is Metamath 100 proof #2. (Contributed by Mario Carneiro, 15-Sep-2014)

Ref Expression
Assertion fta ( ( 𝐹 ∈ ( Poly β€˜ 𝑆 ) ∧ ( deg β€˜ 𝐹 ) ∈ β„• ) β†’ βˆƒ 𝑧 ∈ β„‚ ( 𝐹 β€˜ 𝑧 ) = 0 )

Proof

Step Hyp Ref Expression
1 eqid ⊒ ( coeff β€˜ 𝐹 ) = ( coeff β€˜ 𝐹 )
2 eqid ⊒ ( deg β€˜ 𝐹 ) = ( deg β€˜ 𝐹 )
3 simpl ⊒ ( ( 𝐹 ∈ ( Poly β€˜ 𝑆 ) ∧ ( deg β€˜ 𝐹 ) ∈ β„• ) β†’ 𝐹 ∈ ( Poly β€˜ 𝑆 ) )
4 simpr ⊒ ( ( 𝐹 ∈ ( Poly β€˜ 𝑆 ) ∧ ( deg β€˜ 𝐹 ) ∈ β„• ) β†’ ( deg β€˜ 𝐹 ) ∈ β„• )
5 eqid ⊒ if ( if ( 1 ≀ 𝑠 , 𝑠 , 1 ) ≀ ( ( abs β€˜ ( 𝐹 β€˜ 0 ) ) / ( ( abs β€˜ ( ( coeff β€˜ 𝐹 ) β€˜ ( deg β€˜ 𝐹 ) ) ) / 2 ) ) , ( ( abs β€˜ ( 𝐹 β€˜ 0 ) ) / ( ( abs β€˜ ( ( coeff β€˜ 𝐹 ) β€˜ ( deg β€˜ 𝐹 ) ) ) / 2 ) ) , if ( 1 ≀ 𝑠 , 𝑠 , 1 ) ) = if ( if ( 1 ≀ 𝑠 , 𝑠 , 1 ) ≀ ( ( abs β€˜ ( 𝐹 β€˜ 0 ) ) / ( ( abs β€˜ ( ( coeff β€˜ 𝐹 ) β€˜ ( deg β€˜ 𝐹 ) ) ) / 2 ) ) , ( ( abs β€˜ ( 𝐹 β€˜ 0 ) ) / ( ( abs β€˜ ( ( coeff β€˜ 𝐹 ) β€˜ ( deg β€˜ 𝐹 ) ) ) / 2 ) ) , if ( 1 ≀ 𝑠 , 𝑠 , 1 ) )
6 eqid ⊒ ( ( abs β€˜ ( 𝐹 β€˜ 0 ) ) / ( ( abs β€˜ ( ( coeff β€˜ 𝐹 ) β€˜ ( deg β€˜ 𝐹 ) ) ) / 2 ) ) = ( ( abs β€˜ ( 𝐹 β€˜ 0 ) ) / ( ( abs β€˜ ( ( coeff β€˜ 𝐹 ) β€˜ ( deg β€˜ 𝐹 ) ) ) / 2 ) )
7 1 2 3 4 5 6 ftalem2 ⊒ ( ( 𝐹 ∈ ( Poly β€˜ 𝑆 ) ∧ ( deg β€˜ 𝐹 ) ∈ β„• ) β†’ βˆƒ π‘Ÿ ∈ ℝ+ βˆ€ 𝑦 ∈ β„‚ ( π‘Ÿ < ( abs β€˜ 𝑦 ) β†’ ( abs β€˜ ( 𝐹 β€˜ 0 ) ) < ( abs β€˜ ( 𝐹 β€˜ 𝑦 ) ) ) )
8 simpll ⊒ ( ( ( 𝐹 ∈ ( Poly β€˜ 𝑆 ) ∧ ( deg β€˜ 𝐹 ) ∈ β„• ) ∧ ( π‘Ÿ ∈ ℝ+ ∧ βˆ€ 𝑦 ∈ β„‚ ( π‘Ÿ < ( abs β€˜ 𝑦 ) β†’ ( abs β€˜ ( 𝐹 β€˜ 0 ) ) < ( abs β€˜ ( 𝐹 β€˜ 𝑦 ) ) ) ) ) β†’ 𝐹 ∈ ( Poly β€˜ 𝑆 ) )
9 simplr ⊒ ( ( ( 𝐹 ∈ ( Poly β€˜ 𝑆 ) ∧ ( deg β€˜ 𝐹 ) ∈ β„• ) ∧ ( π‘Ÿ ∈ ℝ+ ∧ βˆ€ 𝑦 ∈ β„‚ ( π‘Ÿ < ( abs β€˜ 𝑦 ) β†’ ( abs β€˜ ( 𝐹 β€˜ 0 ) ) < ( abs β€˜ ( 𝐹 β€˜ 𝑦 ) ) ) ) ) β†’ ( deg β€˜ 𝐹 ) ∈ β„• )
10 eqid ⊒ { 𝑠 ∈ β„‚ ∣ ( abs β€˜ 𝑠 ) ≀ π‘Ÿ } = { 𝑠 ∈ β„‚ ∣ ( abs β€˜ 𝑠 ) ≀ π‘Ÿ }
11 eqid ⊒ ( TopOpen β€˜ β„‚fld ) = ( TopOpen β€˜ β„‚fld )
12 simprl ⊒ ( ( ( 𝐹 ∈ ( Poly β€˜ 𝑆 ) ∧ ( deg β€˜ 𝐹 ) ∈ β„• ) ∧ ( π‘Ÿ ∈ ℝ+ ∧ βˆ€ 𝑦 ∈ β„‚ ( π‘Ÿ < ( abs β€˜ 𝑦 ) β†’ ( abs β€˜ ( 𝐹 β€˜ 0 ) ) < ( abs β€˜ ( 𝐹 β€˜ 𝑦 ) ) ) ) ) β†’ π‘Ÿ ∈ ℝ+ )
13 simprr ⊒ ( ( ( 𝐹 ∈ ( Poly β€˜ 𝑆 ) ∧ ( deg β€˜ 𝐹 ) ∈ β„• ) ∧ ( π‘Ÿ ∈ ℝ+ ∧ βˆ€ 𝑦 ∈ β„‚ ( π‘Ÿ < ( abs β€˜ 𝑦 ) β†’ ( abs β€˜ ( 𝐹 β€˜ 0 ) ) < ( abs β€˜ ( 𝐹 β€˜ 𝑦 ) ) ) ) ) β†’ βˆ€ 𝑦 ∈ β„‚ ( π‘Ÿ < ( abs β€˜ 𝑦 ) β†’ ( abs β€˜ ( 𝐹 β€˜ 0 ) ) < ( abs β€˜ ( 𝐹 β€˜ 𝑦 ) ) ) )
14 fveq2 ⊒ ( 𝑦 = π‘₯ β†’ ( abs β€˜ 𝑦 ) = ( abs β€˜ π‘₯ ) )
15 14 breq2d ⊒ ( 𝑦 = π‘₯ β†’ ( π‘Ÿ < ( abs β€˜ 𝑦 ) ↔ π‘Ÿ < ( abs β€˜ π‘₯ ) ) )
16 2fveq3 ⊒ ( 𝑦 = π‘₯ β†’ ( abs β€˜ ( 𝐹 β€˜ 𝑦 ) ) = ( abs β€˜ ( 𝐹 β€˜ π‘₯ ) ) )
17 16 breq2d ⊒ ( 𝑦 = π‘₯ β†’ ( ( abs β€˜ ( 𝐹 β€˜ 0 ) ) < ( abs β€˜ ( 𝐹 β€˜ 𝑦 ) ) ↔ ( abs β€˜ ( 𝐹 β€˜ 0 ) ) < ( abs β€˜ ( 𝐹 β€˜ π‘₯ ) ) ) )
18 15 17 imbi12d ⊒ ( 𝑦 = π‘₯ β†’ ( ( π‘Ÿ < ( abs β€˜ 𝑦 ) β†’ ( abs β€˜ ( 𝐹 β€˜ 0 ) ) < ( abs β€˜ ( 𝐹 β€˜ 𝑦 ) ) ) ↔ ( π‘Ÿ < ( abs β€˜ π‘₯ ) β†’ ( abs β€˜ ( 𝐹 β€˜ 0 ) ) < ( abs β€˜ ( 𝐹 β€˜ π‘₯ ) ) ) ) )
19 18 cbvralvw ⊒ ( βˆ€ 𝑦 ∈ β„‚ ( π‘Ÿ < ( abs β€˜ 𝑦 ) β†’ ( abs β€˜ ( 𝐹 β€˜ 0 ) ) < ( abs β€˜ ( 𝐹 β€˜ 𝑦 ) ) ) ↔ βˆ€ π‘₯ ∈ β„‚ ( π‘Ÿ < ( abs β€˜ π‘₯ ) β†’ ( abs β€˜ ( 𝐹 β€˜ 0 ) ) < ( abs β€˜ ( 𝐹 β€˜ π‘₯ ) ) ) )
20 13 19 sylib ⊒ ( ( ( 𝐹 ∈ ( Poly β€˜ 𝑆 ) ∧ ( deg β€˜ 𝐹 ) ∈ β„• ) ∧ ( π‘Ÿ ∈ ℝ+ ∧ βˆ€ 𝑦 ∈ β„‚ ( π‘Ÿ < ( abs β€˜ 𝑦 ) β†’ ( abs β€˜ ( 𝐹 β€˜ 0 ) ) < ( abs β€˜ ( 𝐹 β€˜ 𝑦 ) ) ) ) ) β†’ βˆ€ π‘₯ ∈ β„‚ ( π‘Ÿ < ( abs β€˜ π‘₯ ) β†’ ( abs β€˜ ( 𝐹 β€˜ 0 ) ) < ( abs β€˜ ( 𝐹 β€˜ π‘₯ ) ) ) )
21 1 2 8 9 10 11 12 20 ftalem3 ⊒ ( ( ( 𝐹 ∈ ( Poly β€˜ 𝑆 ) ∧ ( deg β€˜ 𝐹 ) ∈ β„• ) ∧ ( π‘Ÿ ∈ ℝ+ ∧ βˆ€ 𝑦 ∈ β„‚ ( π‘Ÿ < ( abs β€˜ 𝑦 ) β†’ ( abs β€˜ ( 𝐹 β€˜ 0 ) ) < ( abs β€˜ ( 𝐹 β€˜ 𝑦 ) ) ) ) ) β†’ βˆƒ 𝑧 ∈ β„‚ βˆ€ π‘₯ ∈ β„‚ ( abs β€˜ ( 𝐹 β€˜ 𝑧 ) ) ≀ ( abs β€˜ ( 𝐹 β€˜ π‘₯ ) ) )
22 7 21 rexlimddv ⊒ ( ( 𝐹 ∈ ( Poly β€˜ 𝑆 ) ∧ ( deg β€˜ 𝐹 ) ∈ β„• ) β†’ βˆƒ 𝑧 ∈ β„‚ βˆ€ π‘₯ ∈ β„‚ ( abs β€˜ ( 𝐹 β€˜ 𝑧 ) ) ≀ ( abs β€˜ ( 𝐹 β€˜ π‘₯ ) ) )
23 simpll ⊒ ( ( ( 𝐹 ∈ ( Poly β€˜ 𝑆 ) ∧ ( deg β€˜ 𝐹 ) ∈ β„• ) ∧ ( 𝑧 ∈ β„‚ ∧ ( 𝐹 β€˜ 𝑧 ) β‰  0 ) ) β†’ 𝐹 ∈ ( Poly β€˜ 𝑆 ) )
24 simplr ⊒ ( ( ( 𝐹 ∈ ( Poly β€˜ 𝑆 ) ∧ ( deg β€˜ 𝐹 ) ∈ β„• ) ∧ ( 𝑧 ∈ β„‚ ∧ ( 𝐹 β€˜ 𝑧 ) β‰  0 ) ) β†’ ( deg β€˜ 𝐹 ) ∈ β„• )
25 simprl ⊒ ( ( ( 𝐹 ∈ ( Poly β€˜ 𝑆 ) ∧ ( deg β€˜ 𝐹 ) ∈ β„• ) ∧ ( 𝑧 ∈ β„‚ ∧ ( 𝐹 β€˜ 𝑧 ) β‰  0 ) ) β†’ 𝑧 ∈ β„‚ )
26 simprr ⊒ ( ( ( 𝐹 ∈ ( Poly β€˜ 𝑆 ) ∧ ( deg β€˜ 𝐹 ) ∈ β„• ) ∧ ( 𝑧 ∈ β„‚ ∧ ( 𝐹 β€˜ 𝑧 ) β‰  0 ) ) β†’ ( 𝐹 β€˜ 𝑧 ) β‰  0 )
27 1 2 23 24 25 26 ftalem7 ⊒ ( ( ( 𝐹 ∈ ( Poly β€˜ 𝑆 ) ∧ ( deg β€˜ 𝐹 ) ∈ β„• ) ∧ ( 𝑧 ∈ β„‚ ∧ ( 𝐹 β€˜ 𝑧 ) β‰  0 ) ) β†’ Β¬ βˆ€ π‘₯ ∈ β„‚ ( abs β€˜ ( 𝐹 β€˜ 𝑧 ) ) ≀ ( abs β€˜ ( 𝐹 β€˜ π‘₯ ) ) )
28 27 expr ⊒ ( ( ( 𝐹 ∈ ( Poly β€˜ 𝑆 ) ∧ ( deg β€˜ 𝐹 ) ∈ β„• ) ∧ 𝑧 ∈ β„‚ ) β†’ ( ( 𝐹 β€˜ 𝑧 ) β‰  0 β†’ Β¬ βˆ€ π‘₯ ∈ β„‚ ( abs β€˜ ( 𝐹 β€˜ 𝑧 ) ) ≀ ( abs β€˜ ( 𝐹 β€˜ π‘₯ ) ) ) )
29 28 necon4ad ⊒ ( ( ( 𝐹 ∈ ( Poly β€˜ 𝑆 ) ∧ ( deg β€˜ 𝐹 ) ∈ β„• ) ∧ 𝑧 ∈ β„‚ ) β†’ ( βˆ€ π‘₯ ∈ β„‚ ( abs β€˜ ( 𝐹 β€˜ 𝑧 ) ) ≀ ( abs β€˜ ( 𝐹 β€˜ π‘₯ ) ) β†’ ( 𝐹 β€˜ 𝑧 ) = 0 ) )
30 29 reximdva ⊒ ( ( 𝐹 ∈ ( Poly β€˜ 𝑆 ) ∧ ( deg β€˜ 𝐹 ) ∈ β„• ) β†’ ( βˆƒ 𝑧 ∈ β„‚ βˆ€ π‘₯ ∈ β„‚ ( abs β€˜ ( 𝐹 β€˜ 𝑧 ) ) ≀ ( abs β€˜ ( 𝐹 β€˜ π‘₯ ) ) β†’ βˆƒ 𝑧 ∈ β„‚ ( 𝐹 β€˜ 𝑧 ) = 0 ) )
31 22 30 mpd ⊒ ( ( 𝐹 ∈ ( Poly β€˜ 𝑆 ) ∧ ( deg β€˜ 𝐹 ) ∈ β„• ) β†’ βˆƒ 𝑧 ∈ β„‚ ( 𝐹 β€˜ 𝑧 ) = 0 )