Metamath Proof Explorer


Theorem ftalem7

Description: Lemma for fta . Shift the minimum away from zero by a change of variables. (Contributed by Mario Carneiro, 14-Sep-2014)

Ref Expression
Hypotheses ftalem.1 𝐴 = ( coeff ‘ 𝐹 )
ftalem.2 𝑁 = ( deg ‘ 𝐹 )
ftalem.3 ( 𝜑𝐹 ∈ ( Poly ‘ 𝑆 ) )
ftalem.4 ( 𝜑𝑁 ∈ ℕ )
ftalem7.5 ( 𝜑𝑋 ∈ ℂ )
ftalem7.6 ( 𝜑 → ( 𝐹𝑋 ) ≠ 0 )
Assertion ftalem7 ( 𝜑 → ¬ ∀ 𝑥 ∈ ℂ ( abs ‘ ( 𝐹𝑋 ) ) ≤ ( abs ‘ ( 𝐹𝑥 ) ) )

Proof

Step Hyp Ref Expression
1 ftalem.1 𝐴 = ( coeff ‘ 𝐹 )
2 ftalem.2 𝑁 = ( deg ‘ 𝐹 )
3 ftalem.3 ( 𝜑𝐹 ∈ ( Poly ‘ 𝑆 ) )
4 ftalem.4 ( 𝜑𝑁 ∈ ℕ )
5 ftalem7.5 ( 𝜑𝑋 ∈ ℂ )
6 ftalem7.6 ( 𝜑 → ( 𝐹𝑋 ) ≠ 0 )
7 eqid ( coeff ‘ ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) ) ) = ( coeff ‘ ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) ) )
8 eqid ( deg ‘ ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) ) ) = ( deg ‘ ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) ) )
9 simpr ( ( 𝜑𝑧 ∈ ℂ ) → 𝑧 ∈ ℂ )
10 5 adantr ( ( 𝜑𝑧 ∈ ℂ ) → 𝑋 ∈ ℂ )
11 9 10 addcld ( ( 𝜑𝑧 ∈ ℂ ) → ( 𝑧 + 𝑋 ) ∈ ℂ )
12 cnex ℂ ∈ V
13 12 a1i ( 𝜑 → ℂ ∈ V )
14 5 negcld ( 𝜑 → - 𝑋 ∈ ℂ )
15 14 adantr ( ( 𝜑𝑧 ∈ ℂ ) → - 𝑋 ∈ ℂ )
16 df-idp Xp = ( I ↾ ℂ )
17 mptresid ( I ↾ ℂ ) = ( 𝑧 ∈ ℂ ↦ 𝑧 )
18 16 17 eqtri Xp = ( 𝑧 ∈ ℂ ↦ 𝑧 )
19 18 a1i ( 𝜑Xp = ( 𝑧 ∈ ℂ ↦ 𝑧 ) )
20 fconstmpt ( ℂ × { - 𝑋 } ) = ( 𝑧 ∈ ℂ ↦ - 𝑋 )
21 20 a1i ( 𝜑 → ( ℂ × { - 𝑋 } ) = ( 𝑧 ∈ ℂ ↦ - 𝑋 ) )
22 13 9 15 19 21 offval2 ( 𝜑 → ( Xpf − ( ℂ × { - 𝑋 } ) ) = ( 𝑧 ∈ ℂ ↦ ( 𝑧 − - 𝑋 ) ) )
23 id ( 𝑧 ∈ ℂ → 𝑧 ∈ ℂ )
24 subneg ( ( 𝑧 ∈ ℂ ∧ 𝑋 ∈ ℂ ) → ( 𝑧 − - 𝑋 ) = ( 𝑧 + 𝑋 ) )
25 23 5 24 syl2anr ( ( 𝜑𝑧 ∈ ℂ ) → ( 𝑧 − - 𝑋 ) = ( 𝑧 + 𝑋 ) )
26 25 mpteq2dva ( 𝜑 → ( 𝑧 ∈ ℂ ↦ ( 𝑧 − - 𝑋 ) ) = ( 𝑧 ∈ ℂ ↦ ( 𝑧 + 𝑋 ) ) )
27 22 26 eqtrd ( 𝜑 → ( Xpf − ( ℂ × { - 𝑋 } ) ) = ( 𝑧 ∈ ℂ ↦ ( 𝑧 + 𝑋 ) ) )
28 plyf ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝐹 : ℂ ⟶ ℂ )
29 3 28 syl ( 𝜑𝐹 : ℂ ⟶ ℂ )
30 29 feqmptd ( 𝜑𝐹 = ( 𝑦 ∈ ℂ ↦ ( 𝐹𝑦 ) ) )
31 fveq2 ( 𝑦 = ( 𝑧 + 𝑋 ) → ( 𝐹𝑦 ) = ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) )
32 11 27 30 31 fmptco ( 𝜑 → ( 𝐹 ∘ ( Xpf − ( ℂ × { - 𝑋 } ) ) ) = ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) ) )
33 plyssc ( Poly ‘ 𝑆 ) ⊆ ( Poly ‘ ℂ )
34 33 3 sseldi ( 𝜑𝐹 ∈ ( Poly ‘ ℂ ) )
35 eqid ( Xpf − ( ℂ × { - 𝑋 } ) ) = ( Xpf − ( ℂ × { - 𝑋 } ) )
36 35 plyremlem ( - 𝑋 ∈ ℂ → ( ( Xpf − ( ℂ × { - 𝑋 } ) ) ∈ ( Poly ‘ ℂ ) ∧ ( deg ‘ ( Xpf − ( ℂ × { - 𝑋 } ) ) ) = 1 ∧ ( ( Xpf − ( ℂ × { - 𝑋 } ) ) “ { 0 } ) = { - 𝑋 } ) )
37 14 36 syl ( 𝜑 → ( ( Xpf − ( ℂ × { - 𝑋 } ) ) ∈ ( Poly ‘ ℂ ) ∧ ( deg ‘ ( Xpf − ( ℂ × { - 𝑋 } ) ) ) = 1 ∧ ( ( Xpf − ( ℂ × { - 𝑋 } ) ) “ { 0 } ) = { - 𝑋 } ) )
38 37 simp1d ( 𝜑 → ( Xpf − ( ℂ × { - 𝑋 } ) ) ∈ ( Poly ‘ ℂ ) )
39 addcl ( ( 𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ ) → ( 𝑧 + 𝑤 ) ∈ ℂ )
40 39 adantl ( ( 𝜑 ∧ ( 𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ ) ) → ( 𝑧 + 𝑤 ) ∈ ℂ )
41 mulcl ( ( 𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ ) → ( 𝑧 · 𝑤 ) ∈ ℂ )
42 41 adantl ( ( 𝜑 ∧ ( 𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ ) ) → ( 𝑧 · 𝑤 ) ∈ ℂ )
43 34 38 40 42 plyco ( 𝜑 → ( 𝐹 ∘ ( Xpf − ( ℂ × { - 𝑋 } ) ) ) ∈ ( Poly ‘ ℂ ) )
44 32 43 eqeltrrd ( 𝜑 → ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) ) ∈ ( Poly ‘ ℂ ) )
45 32 fveq2d ( 𝜑 → ( deg ‘ ( 𝐹 ∘ ( Xpf − ( ℂ × { - 𝑋 } ) ) ) ) = ( deg ‘ ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) ) ) )
46 eqid ( deg ‘ ( Xpf − ( ℂ × { - 𝑋 } ) ) ) = ( deg ‘ ( Xpf − ( ℂ × { - 𝑋 } ) ) )
47 2 46 34 38 dgrco ( 𝜑 → ( deg ‘ ( 𝐹 ∘ ( Xpf − ( ℂ × { - 𝑋 } ) ) ) ) = ( 𝑁 · ( deg ‘ ( Xpf − ( ℂ × { - 𝑋 } ) ) ) ) )
48 37 simp2d ( 𝜑 → ( deg ‘ ( Xpf − ( ℂ × { - 𝑋 } ) ) ) = 1 )
49 1nn 1 ∈ ℕ
50 48 49 eqeltrdi ( 𝜑 → ( deg ‘ ( Xpf − ( ℂ × { - 𝑋 } ) ) ) ∈ ℕ )
51 4 50 nnmulcld ( 𝜑 → ( 𝑁 · ( deg ‘ ( Xpf − ( ℂ × { - 𝑋 } ) ) ) ) ∈ ℕ )
52 47 51 eqeltrd ( 𝜑 → ( deg ‘ ( 𝐹 ∘ ( Xpf − ( ℂ × { - 𝑋 } ) ) ) ) ∈ ℕ )
53 45 52 eqeltrrd ( 𝜑 → ( deg ‘ ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) ) ) ∈ ℕ )
54 0cn 0 ∈ ℂ
55 fvoveq1 ( 𝑧 = 0 → ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) = ( 𝐹 ‘ ( 0 + 𝑋 ) ) )
56 eqid ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) ) = ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) )
57 fvex ( 𝐹 ‘ ( 0 + 𝑋 ) ) ∈ V
58 55 56 57 fvmpt ( 0 ∈ ℂ → ( ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) ) ‘ 0 ) = ( 𝐹 ‘ ( 0 + 𝑋 ) ) )
59 54 58 ax-mp ( ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) ) ‘ 0 ) = ( 𝐹 ‘ ( 0 + 𝑋 ) )
60 5 addid2d ( 𝜑 → ( 0 + 𝑋 ) = 𝑋 )
61 60 fveq2d ( 𝜑 → ( 𝐹 ‘ ( 0 + 𝑋 ) ) = ( 𝐹𝑋 ) )
62 59 61 syl5eq ( 𝜑 → ( ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) ) ‘ 0 ) = ( 𝐹𝑋 ) )
63 62 6 eqnetrd ( 𝜑 → ( ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) ) ‘ 0 ) ≠ 0 )
64 7 8 44 53 63 ftalem6 ( 𝜑 → ∃ 𝑦 ∈ ℂ ( abs ‘ ( ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) ) ‘ 𝑦 ) ) < ( abs ‘ ( ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) ) ‘ 0 ) ) )
65 id ( 𝑦 ∈ ℂ → 𝑦 ∈ ℂ )
66 addcl ( ( 𝑦 ∈ ℂ ∧ 𝑋 ∈ ℂ ) → ( 𝑦 + 𝑋 ) ∈ ℂ )
67 65 5 66 syl2anr ( ( 𝜑𝑦 ∈ ℂ ) → ( 𝑦 + 𝑋 ) ∈ ℂ )
68 fvoveq1 ( 𝑧 = 𝑦 → ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) = ( 𝐹 ‘ ( 𝑦 + 𝑋 ) ) )
69 fvex ( 𝐹 ‘ ( 𝑦 + 𝑋 ) ) ∈ V
70 68 56 69 fvmpt ( 𝑦 ∈ ℂ → ( ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) ) ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑦 + 𝑋 ) ) )
71 70 adantl ( ( 𝜑𝑦 ∈ ℂ ) → ( ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) ) ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑦 + 𝑋 ) ) )
72 71 fveq2d ( ( 𝜑𝑦 ∈ ℂ ) → ( abs ‘ ( ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) ) ‘ 𝑦 ) ) = ( abs ‘ ( 𝐹 ‘ ( 𝑦 + 𝑋 ) ) ) )
73 62 adantr ( ( 𝜑𝑦 ∈ ℂ ) → ( ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) ) ‘ 0 ) = ( 𝐹𝑋 ) )
74 73 fveq2d ( ( 𝜑𝑦 ∈ ℂ ) → ( abs ‘ ( ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) ) ‘ 0 ) ) = ( abs ‘ ( 𝐹𝑋 ) ) )
75 72 74 breq12d ( ( 𝜑𝑦 ∈ ℂ ) → ( ( abs ‘ ( ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) ) ‘ 𝑦 ) ) < ( abs ‘ ( ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) ) ‘ 0 ) ) ↔ ( abs ‘ ( 𝐹 ‘ ( 𝑦 + 𝑋 ) ) ) < ( abs ‘ ( 𝐹𝑋 ) ) ) )
76 29 adantr ( ( 𝜑𝑦 ∈ ℂ ) → 𝐹 : ℂ ⟶ ℂ )
77 76 67 ffvelrnd ( ( 𝜑𝑦 ∈ ℂ ) → ( 𝐹 ‘ ( 𝑦 + 𝑋 ) ) ∈ ℂ )
78 77 abscld ( ( 𝜑𝑦 ∈ ℂ ) → ( abs ‘ ( 𝐹 ‘ ( 𝑦 + 𝑋 ) ) ) ∈ ℝ )
79 29 5 ffvelrnd ( 𝜑 → ( 𝐹𝑋 ) ∈ ℂ )
80 79 abscld ( 𝜑 → ( abs ‘ ( 𝐹𝑋 ) ) ∈ ℝ )
81 80 adantr ( ( 𝜑𝑦 ∈ ℂ ) → ( abs ‘ ( 𝐹𝑋 ) ) ∈ ℝ )
82 78 81 ltnled ( ( 𝜑𝑦 ∈ ℂ ) → ( ( abs ‘ ( 𝐹 ‘ ( 𝑦 + 𝑋 ) ) ) < ( abs ‘ ( 𝐹𝑋 ) ) ↔ ¬ ( abs ‘ ( 𝐹𝑋 ) ) ≤ ( abs ‘ ( 𝐹 ‘ ( 𝑦 + 𝑋 ) ) ) ) )
83 75 82 bitrd ( ( 𝜑𝑦 ∈ ℂ ) → ( ( abs ‘ ( ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) ) ‘ 𝑦 ) ) < ( abs ‘ ( ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) ) ‘ 0 ) ) ↔ ¬ ( abs ‘ ( 𝐹𝑋 ) ) ≤ ( abs ‘ ( 𝐹 ‘ ( 𝑦 + 𝑋 ) ) ) ) )
84 83 biimpd ( ( 𝜑𝑦 ∈ ℂ ) → ( ( abs ‘ ( ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) ) ‘ 𝑦 ) ) < ( abs ‘ ( ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) ) ‘ 0 ) ) → ¬ ( abs ‘ ( 𝐹𝑋 ) ) ≤ ( abs ‘ ( 𝐹 ‘ ( 𝑦 + 𝑋 ) ) ) ) )
85 2fveq3 ( 𝑥 = ( 𝑦 + 𝑋 ) → ( abs ‘ ( 𝐹𝑥 ) ) = ( abs ‘ ( 𝐹 ‘ ( 𝑦 + 𝑋 ) ) ) )
86 85 breq2d ( 𝑥 = ( 𝑦 + 𝑋 ) → ( ( abs ‘ ( 𝐹𝑋 ) ) ≤ ( abs ‘ ( 𝐹𝑥 ) ) ↔ ( abs ‘ ( 𝐹𝑋 ) ) ≤ ( abs ‘ ( 𝐹 ‘ ( 𝑦 + 𝑋 ) ) ) ) )
87 86 notbid ( 𝑥 = ( 𝑦 + 𝑋 ) → ( ¬ ( abs ‘ ( 𝐹𝑋 ) ) ≤ ( abs ‘ ( 𝐹𝑥 ) ) ↔ ¬ ( abs ‘ ( 𝐹𝑋 ) ) ≤ ( abs ‘ ( 𝐹 ‘ ( 𝑦 + 𝑋 ) ) ) ) )
88 87 rspcev ( ( ( 𝑦 + 𝑋 ) ∈ ℂ ∧ ¬ ( abs ‘ ( 𝐹𝑋 ) ) ≤ ( abs ‘ ( 𝐹 ‘ ( 𝑦 + 𝑋 ) ) ) ) → ∃ 𝑥 ∈ ℂ ¬ ( abs ‘ ( 𝐹𝑋 ) ) ≤ ( abs ‘ ( 𝐹𝑥 ) ) )
89 67 84 88 syl6an ( ( 𝜑𝑦 ∈ ℂ ) → ( ( abs ‘ ( ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) ) ‘ 𝑦 ) ) < ( abs ‘ ( ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) ) ‘ 0 ) ) → ∃ 𝑥 ∈ ℂ ¬ ( abs ‘ ( 𝐹𝑋 ) ) ≤ ( abs ‘ ( 𝐹𝑥 ) ) ) )
90 89 rexlimdva ( 𝜑 → ( ∃ 𝑦 ∈ ℂ ( abs ‘ ( ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) ) ‘ 𝑦 ) ) < ( abs ‘ ( ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) ) ‘ 0 ) ) → ∃ 𝑥 ∈ ℂ ¬ ( abs ‘ ( 𝐹𝑋 ) ) ≤ ( abs ‘ ( 𝐹𝑥 ) ) ) )
91 64 90 mpd ( 𝜑 → ∃ 𝑥 ∈ ℂ ¬ ( abs ‘ ( 𝐹𝑋 ) ) ≤ ( abs ‘ ( 𝐹𝑥 ) ) )
92 rexnal ( ∃ 𝑥 ∈ ℂ ¬ ( abs ‘ ( 𝐹𝑋 ) ) ≤ ( abs ‘ ( 𝐹𝑥 ) ) ↔ ¬ ∀ 𝑥 ∈ ℂ ( abs ‘ ( 𝐹𝑋 ) ) ≤ ( abs ‘ ( 𝐹𝑥 ) ) )
93 91 92 sylib ( 𝜑 → ¬ ∀ 𝑥 ∈ ℂ ( abs ‘ ( 𝐹𝑋 ) ) ≤ ( abs ‘ ( 𝐹𝑥 ) ) )