| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ftalem.1 |
⊢ 𝐴 = ( coeff ‘ 𝐹 ) |
| 2 |
|
ftalem.2 |
⊢ 𝑁 = ( deg ‘ 𝐹 ) |
| 3 |
|
ftalem.3 |
⊢ ( 𝜑 → 𝐹 ∈ ( Poly ‘ 𝑆 ) ) |
| 4 |
|
ftalem.4 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 5 |
|
ftalem7.5 |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
| 6 |
|
ftalem7.6 |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ≠ 0 ) |
| 7 |
|
eqid |
⊢ ( coeff ‘ ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) ) ) = ( coeff ‘ ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) ) ) |
| 8 |
|
eqid |
⊢ ( deg ‘ ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) ) ) = ( deg ‘ ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) ) ) |
| 9 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → 𝑧 ∈ ℂ ) |
| 10 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → 𝑋 ∈ ℂ ) |
| 11 |
9 10
|
addcld |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → ( 𝑧 + 𝑋 ) ∈ ℂ ) |
| 12 |
|
cnex |
⊢ ℂ ∈ V |
| 13 |
12
|
a1i |
⊢ ( 𝜑 → ℂ ∈ V ) |
| 14 |
5
|
negcld |
⊢ ( 𝜑 → - 𝑋 ∈ ℂ ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → - 𝑋 ∈ ℂ ) |
| 16 |
|
df-idp |
⊢ Xp = ( I ↾ ℂ ) |
| 17 |
|
mptresid |
⊢ ( I ↾ ℂ ) = ( 𝑧 ∈ ℂ ↦ 𝑧 ) |
| 18 |
16 17
|
eqtri |
⊢ Xp = ( 𝑧 ∈ ℂ ↦ 𝑧 ) |
| 19 |
18
|
a1i |
⊢ ( 𝜑 → Xp = ( 𝑧 ∈ ℂ ↦ 𝑧 ) ) |
| 20 |
|
fconstmpt |
⊢ ( ℂ × { - 𝑋 } ) = ( 𝑧 ∈ ℂ ↦ - 𝑋 ) |
| 21 |
20
|
a1i |
⊢ ( 𝜑 → ( ℂ × { - 𝑋 } ) = ( 𝑧 ∈ ℂ ↦ - 𝑋 ) ) |
| 22 |
13 9 15 19 21
|
offval2 |
⊢ ( 𝜑 → ( Xp ∘f − ( ℂ × { - 𝑋 } ) ) = ( 𝑧 ∈ ℂ ↦ ( 𝑧 − - 𝑋 ) ) ) |
| 23 |
|
id |
⊢ ( 𝑧 ∈ ℂ → 𝑧 ∈ ℂ ) |
| 24 |
|
subneg |
⊢ ( ( 𝑧 ∈ ℂ ∧ 𝑋 ∈ ℂ ) → ( 𝑧 − - 𝑋 ) = ( 𝑧 + 𝑋 ) ) |
| 25 |
23 5 24
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → ( 𝑧 − - 𝑋 ) = ( 𝑧 + 𝑋 ) ) |
| 26 |
25
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑧 ∈ ℂ ↦ ( 𝑧 − - 𝑋 ) ) = ( 𝑧 ∈ ℂ ↦ ( 𝑧 + 𝑋 ) ) ) |
| 27 |
22 26
|
eqtrd |
⊢ ( 𝜑 → ( Xp ∘f − ( ℂ × { - 𝑋 } ) ) = ( 𝑧 ∈ ℂ ↦ ( 𝑧 + 𝑋 ) ) ) |
| 28 |
|
plyf |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝐹 : ℂ ⟶ ℂ ) |
| 29 |
3 28
|
syl |
⊢ ( 𝜑 → 𝐹 : ℂ ⟶ ℂ ) |
| 30 |
29
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑦 ∈ ℂ ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
| 31 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝑧 + 𝑋 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) ) |
| 32 |
11 27 30 31
|
fmptco |
⊢ ( 𝜑 → ( 𝐹 ∘ ( Xp ∘f − ( ℂ × { - 𝑋 } ) ) ) = ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) ) ) |
| 33 |
|
plyssc |
⊢ ( Poly ‘ 𝑆 ) ⊆ ( Poly ‘ ℂ ) |
| 34 |
33 3
|
sselid |
⊢ ( 𝜑 → 𝐹 ∈ ( Poly ‘ ℂ ) ) |
| 35 |
|
eqid |
⊢ ( Xp ∘f − ( ℂ × { - 𝑋 } ) ) = ( Xp ∘f − ( ℂ × { - 𝑋 } ) ) |
| 36 |
35
|
plyremlem |
⊢ ( - 𝑋 ∈ ℂ → ( ( Xp ∘f − ( ℂ × { - 𝑋 } ) ) ∈ ( Poly ‘ ℂ ) ∧ ( deg ‘ ( Xp ∘f − ( ℂ × { - 𝑋 } ) ) ) = 1 ∧ ( ◡ ( Xp ∘f − ( ℂ × { - 𝑋 } ) ) “ { 0 } ) = { - 𝑋 } ) ) |
| 37 |
14 36
|
syl |
⊢ ( 𝜑 → ( ( Xp ∘f − ( ℂ × { - 𝑋 } ) ) ∈ ( Poly ‘ ℂ ) ∧ ( deg ‘ ( Xp ∘f − ( ℂ × { - 𝑋 } ) ) ) = 1 ∧ ( ◡ ( Xp ∘f − ( ℂ × { - 𝑋 } ) ) “ { 0 } ) = { - 𝑋 } ) ) |
| 38 |
37
|
simp1d |
⊢ ( 𝜑 → ( Xp ∘f − ( ℂ × { - 𝑋 } ) ) ∈ ( Poly ‘ ℂ ) ) |
| 39 |
|
addcl |
⊢ ( ( 𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ ) → ( 𝑧 + 𝑤 ) ∈ ℂ ) |
| 40 |
39
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ ) ) → ( 𝑧 + 𝑤 ) ∈ ℂ ) |
| 41 |
|
mulcl |
⊢ ( ( 𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ ) → ( 𝑧 · 𝑤 ) ∈ ℂ ) |
| 42 |
41
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ ) ) → ( 𝑧 · 𝑤 ) ∈ ℂ ) |
| 43 |
34 38 40 42
|
plyco |
⊢ ( 𝜑 → ( 𝐹 ∘ ( Xp ∘f − ( ℂ × { - 𝑋 } ) ) ) ∈ ( Poly ‘ ℂ ) ) |
| 44 |
32 43
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) ) ∈ ( Poly ‘ ℂ ) ) |
| 45 |
32
|
fveq2d |
⊢ ( 𝜑 → ( deg ‘ ( 𝐹 ∘ ( Xp ∘f − ( ℂ × { - 𝑋 } ) ) ) ) = ( deg ‘ ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) ) ) ) |
| 46 |
|
eqid |
⊢ ( deg ‘ ( Xp ∘f − ( ℂ × { - 𝑋 } ) ) ) = ( deg ‘ ( Xp ∘f − ( ℂ × { - 𝑋 } ) ) ) |
| 47 |
2 46 34 38
|
dgrco |
⊢ ( 𝜑 → ( deg ‘ ( 𝐹 ∘ ( Xp ∘f − ( ℂ × { - 𝑋 } ) ) ) ) = ( 𝑁 · ( deg ‘ ( Xp ∘f − ( ℂ × { - 𝑋 } ) ) ) ) ) |
| 48 |
37
|
simp2d |
⊢ ( 𝜑 → ( deg ‘ ( Xp ∘f − ( ℂ × { - 𝑋 } ) ) ) = 1 ) |
| 49 |
|
1nn |
⊢ 1 ∈ ℕ |
| 50 |
48 49
|
eqeltrdi |
⊢ ( 𝜑 → ( deg ‘ ( Xp ∘f − ( ℂ × { - 𝑋 } ) ) ) ∈ ℕ ) |
| 51 |
4 50
|
nnmulcld |
⊢ ( 𝜑 → ( 𝑁 · ( deg ‘ ( Xp ∘f − ( ℂ × { - 𝑋 } ) ) ) ) ∈ ℕ ) |
| 52 |
47 51
|
eqeltrd |
⊢ ( 𝜑 → ( deg ‘ ( 𝐹 ∘ ( Xp ∘f − ( ℂ × { - 𝑋 } ) ) ) ) ∈ ℕ ) |
| 53 |
45 52
|
eqeltrrd |
⊢ ( 𝜑 → ( deg ‘ ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) ) ) ∈ ℕ ) |
| 54 |
|
0cn |
⊢ 0 ∈ ℂ |
| 55 |
|
fvoveq1 |
⊢ ( 𝑧 = 0 → ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) = ( 𝐹 ‘ ( 0 + 𝑋 ) ) ) |
| 56 |
|
eqid |
⊢ ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) ) = ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) ) |
| 57 |
|
fvex |
⊢ ( 𝐹 ‘ ( 0 + 𝑋 ) ) ∈ V |
| 58 |
55 56 57
|
fvmpt |
⊢ ( 0 ∈ ℂ → ( ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) ) ‘ 0 ) = ( 𝐹 ‘ ( 0 + 𝑋 ) ) ) |
| 59 |
54 58
|
ax-mp |
⊢ ( ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) ) ‘ 0 ) = ( 𝐹 ‘ ( 0 + 𝑋 ) ) |
| 60 |
5
|
addlidd |
⊢ ( 𝜑 → ( 0 + 𝑋 ) = 𝑋 ) |
| 61 |
60
|
fveq2d |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 0 + 𝑋 ) ) = ( 𝐹 ‘ 𝑋 ) ) |
| 62 |
59 61
|
eqtrid |
⊢ ( 𝜑 → ( ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) ) ‘ 0 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 63 |
62 6
|
eqnetrd |
⊢ ( 𝜑 → ( ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) ) ‘ 0 ) ≠ 0 ) |
| 64 |
7 8 44 53 63
|
ftalem6 |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ℂ ( abs ‘ ( ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) ) ‘ 𝑦 ) ) < ( abs ‘ ( ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) ) ‘ 0 ) ) ) |
| 65 |
|
id |
⊢ ( 𝑦 ∈ ℂ → 𝑦 ∈ ℂ ) |
| 66 |
|
addcl |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑋 ∈ ℂ ) → ( 𝑦 + 𝑋 ) ∈ ℂ ) |
| 67 |
65 5 66
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( 𝑦 + 𝑋 ) ∈ ℂ ) |
| 68 |
|
fvoveq1 |
⊢ ( 𝑧 = 𝑦 → ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) = ( 𝐹 ‘ ( 𝑦 + 𝑋 ) ) ) |
| 69 |
|
fvex |
⊢ ( 𝐹 ‘ ( 𝑦 + 𝑋 ) ) ∈ V |
| 70 |
68 56 69
|
fvmpt |
⊢ ( 𝑦 ∈ ℂ → ( ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) ) ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑦 + 𝑋 ) ) ) |
| 71 |
70
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) ) ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑦 + 𝑋 ) ) ) |
| 72 |
71
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( abs ‘ ( ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) ) ‘ 𝑦 ) ) = ( abs ‘ ( 𝐹 ‘ ( 𝑦 + 𝑋 ) ) ) ) |
| 73 |
62
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) ) ‘ 0 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 74 |
73
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( abs ‘ ( ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) ) ‘ 0 ) ) = ( abs ‘ ( 𝐹 ‘ 𝑋 ) ) ) |
| 75 |
72 74
|
breq12d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( ( abs ‘ ( ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) ) ‘ 𝑦 ) ) < ( abs ‘ ( ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) ) ‘ 0 ) ) ↔ ( abs ‘ ( 𝐹 ‘ ( 𝑦 + 𝑋 ) ) ) < ( abs ‘ ( 𝐹 ‘ 𝑋 ) ) ) ) |
| 76 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → 𝐹 : ℂ ⟶ ℂ ) |
| 77 |
76 67
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( 𝐹 ‘ ( 𝑦 + 𝑋 ) ) ∈ ℂ ) |
| 78 |
77
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( abs ‘ ( 𝐹 ‘ ( 𝑦 + 𝑋 ) ) ) ∈ ℝ ) |
| 79 |
29 5
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ ℂ ) |
| 80 |
79
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( 𝐹 ‘ 𝑋 ) ) ∈ ℝ ) |
| 81 |
80
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( abs ‘ ( 𝐹 ‘ 𝑋 ) ) ∈ ℝ ) |
| 82 |
78 81
|
ltnled |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( ( abs ‘ ( 𝐹 ‘ ( 𝑦 + 𝑋 ) ) ) < ( abs ‘ ( 𝐹 ‘ 𝑋 ) ) ↔ ¬ ( abs ‘ ( 𝐹 ‘ 𝑋 ) ) ≤ ( abs ‘ ( 𝐹 ‘ ( 𝑦 + 𝑋 ) ) ) ) ) |
| 83 |
75 82
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( ( abs ‘ ( ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) ) ‘ 𝑦 ) ) < ( abs ‘ ( ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) ) ‘ 0 ) ) ↔ ¬ ( abs ‘ ( 𝐹 ‘ 𝑋 ) ) ≤ ( abs ‘ ( 𝐹 ‘ ( 𝑦 + 𝑋 ) ) ) ) ) |
| 84 |
83
|
biimpd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( ( abs ‘ ( ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) ) ‘ 𝑦 ) ) < ( abs ‘ ( ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) ) ‘ 0 ) ) → ¬ ( abs ‘ ( 𝐹 ‘ 𝑋 ) ) ≤ ( abs ‘ ( 𝐹 ‘ ( 𝑦 + 𝑋 ) ) ) ) ) |
| 85 |
|
2fveq3 |
⊢ ( 𝑥 = ( 𝑦 + 𝑋 ) → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) = ( abs ‘ ( 𝐹 ‘ ( 𝑦 + 𝑋 ) ) ) ) |
| 86 |
85
|
breq2d |
⊢ ( 𝑥 = ( 𝑦 + 𝑋 ) → ( ( abs ‘ ( 𝐹 ‘ 𝑋 ) ) ≤ ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ↔ ( abs ‘ ( 𝐹 ‘ 𝑋 ) ) ≤ ( abs ‘ ( 𝐹 ‘ ( 𝑦 + 𝑋 ) ) ) ) ) |
| 87 |
86
|
notbid |
⊢ ( 𝑥 = ( 𝑦 + 𝑋 ) → ( ¬ ( abs ‘ ( 𝐹 ‘ 𝑋 ) ) ≤ ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ↔ ¬ ( abs ‘ ( 𝐹 ‘ 𝑋 ) ) ≤ ( abs ‘ ( 𝐹 ‘ ( 𝑦 + 𝑋 ) ) ) ) ) |
| 88 |
87
|
rspcev |
⊢ ( ( ( 𝑦 + 𝑋 ) ∈ ℂ ∧ ¬ ( abs ‘ ( 𝐹 ‘ 𝑋 ) ) ≤ ( abs ‘ ( 𝐹 ‘ ( 𝑦 + 𝑋 ) ) ) ) → ∃ 𝑥 ∈ ℂ ¬ ( abs ‘ ( 𝐹 ‘ 𝑋 ) ) ≤ ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 89 |
67 84 88
|
syl6an |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( ( abs ‘ ( ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) ) ‘ 𝑦 ) ) < ( abs ‘ ( ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) ) ‘ 0 ) ) → ∃ 𝑥 ∈ ℂ ¬ ( abs ‘ ( 𝐹 ‘ 𝑋 ) ) ≤ ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 90 |
89
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ℂ ( abs ‘ ( ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) ) ‘ 𝑦 ) ) < ( abs ‘ ( ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ ( 𝑧 + 𝑋 ) ) ) ‘ 0 ) ) → ∃ 𝑥 ∈ ℂ ¬ ( abs ‘ ( 𝐹 ‘ 𝑋 ) ) ≤ ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 91 |
64 90
|
mpd |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℂ ¬ ( abs ‘ ( 𝐹 ‘ 𝑋 ) ) ≤ ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 92 |
|
rexnal |
⊢ ( ∃ 𝑥 ∈ ℂ ¬ ( abs ‘ ( 𝐹 ‘ 𝑋 ) ) ≤ ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ↔ ¬ ∀ 𝑥 ∈ ℂ ( abs ‘ ( 𝐹 ‘ 𝑋 ) ) ≤ ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 93 |
91 92
|
sylib |
⊢ ( 𝜑 → ¬ ∀ 𝑥 ∈ ℂ ( abs ‘ ( 𝐹 ‘ 𝑋 ) ) ≤ ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) |