| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fthcomf.1 |
⊢ ( 𝜑 → 𝐹 ( 𝐴 Faith 𝐶 ) 𝐺 ) |
| 2 |
|
fthcomf.2 |
⊢ ( 𝜑 → 𝐹 ( 𝐵 Func 𝐷 ) 𝐺 ) |
| 3 |
|
fthcomf.3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) ) → ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑔 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑓 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑔 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑓 ) ) ) |
| 4 |
|
eqid |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) |
| 5 |
|
eqid |
⊢ ( Hom ‘ 𝐴 ) = ( Hom ‘ 𝐴 ) |
| 6 |
|
eqid |
⊢ ( comp ‘ 𝐴 ) = ( comp ‘ 𝐴 ) |
| 7 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
| 8 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) ) → 𝐹 ( 𝐴 Faith 𝐶 ) 𝐺 ) |
| 9 |
|
fthfunc |
⊢ ( 𝐴 Faith 𝐶 ) ⊆ ( 𝐴 Func 𝐶 ) |
| 10 |
9
|
ssbri |
⊢ ( 𝐹 ( 𝐴 Faith 𝐶 ) 𝐺 → 𝐹 ( 𝐴 Func 𝐶 ) 𝐺 ) |
| 11 |
8 10
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) ) → 𝐹 ( 𝐴 Func 𝐶 ) 𝐺 ) |
| 12 |
|
simplr1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐴 ) ) |
| 13 |
|
simplr2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐴 ) ) |
| 14 |
|
simplr3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) ) → 𝑧 ∈ ( Base ‘ 𝐴 ) ) |
| 15 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) ) → 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) |
| 16 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) ) → 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) |
| 17 |
4 5 6 7 11 12 13 14 15 16
|
funcco |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) ) → ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐴 ) 𝑧 ) 𝑓 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑔 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑓 ) ) ) |
| 18 |
|
eqid |
⊢ ( Base ‘ 𝐵 ) = ( Base ‘ 𝐵 ) |
| 19 |
|
eqid |
⊢ ( Hom ‘ 𝐵 ) = ( Hom ‘ 𝐵 ) |
| 20 |
|
eqid |
⊢ ( comp ‘ 𝐵 ) = ( comp ‘ 𝐵 ) |
| 21 |
|
eqid |
⊢ ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 ) |
| 22 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) ) → 𝐹 ( 𝐵 Func 𝐷 ) 𝐺 ) |
| 23 |
1 10
|
syl |
⊢ ( 𝜑 → 𝐹 ( 𝐴 Func 𝐶 ) 𝐺 ) |
| 24 |
23 2
|
funchomf |
⊢ ( 𝜑 → ( Homf ‘ 𝐴 ) = ( Homf ‘ 𝐵 ) ) |
| 25 |
24
|
homfeqbas |
⊢ ( 𝜑 → ( Base ‘ 𝐴 ) = ( Base ‘ 𝐵 ) ) |
| 26 |
25
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) ) → ( Base ‘ 𝐴 ) = ( Base ‘ 𝐵 ) ) |
| 27 |
12 26
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐵 ) ) |
| 28 |
13 26
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐵 ) ) |
| 29 |
14 26
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) ) → 𝑧 ∈ ( Base ‘ 𝐵 ) ) |
| 30 |
24
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) ) → ( Homf ‘ 𝐴 ) = ( Homf ‘ 𝐵 ) ) |
| 31 |
4 5 19 30 12 13
|
homfeqval |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) ) → ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ) |
| 32 |
15 31
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) ) → 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ) |
| 33 |
4 5 19 30 13 14
|
homfeqval |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) ) → ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) = ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ) |
| 34 |
16 33
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) ) → 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ) |
| 35 |
18 19 20 21 22 27 28 29 32 34
|
funcco |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) ) → ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑓 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑔 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑓 ) ) ) |
| 36 |
3 17 35
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) ) → ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐴 ) 𝑧 ) 𝑓 ) ) = ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑓 ) ) ) |
| 37 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
| 38 |
23
|
funcrcl2 |
⊢ ( 𝜑 → 𝐴 ∈ Cat ) |
| 39 |
38
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) ) → 𝐴 ∈ Cat ) |
| 40 |
4 5 6 39 12 13 14 15 16
|
catcocl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐴 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑧 ) ) |
| 41 |
2
|
funcrcl2 |
⊢ ( 𝜑 → 𝐵 ∈ Cat ) |
| 42 |
41
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) ) → 𝐵 ∈ Cat ) |
| 43 |
18 19 20 42 27 28 29 32 34
|
catcocl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑧 ) ) |
| 44 |
4 5 19 30 12 14
|
homfeqval |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) ) → ( 𝑥 ( Hom ‘ 𝐴 ) 𝑧 ) = ( 𝑥 ( Hom ‘ 𝐵 ) 𝑧 ) ) |
| 45 |
43 44
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑧 ) ) |
| 46 |
4 5 37 8 12 14 40 45
|
fthi |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) ) → ( ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐴 ) 𝑧 ) 𝑓 ) ) = ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑓 ) ) ↔ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐴 ) 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑓 ) ) ) |
| 47 |
36 46
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐴 ) 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑓 ) ) |
| 48 |
47
|
ralrimivva |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ) → ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐴 ) 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑓 ) ) |
| 49 |
48
|
ralrimivvva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐴 ) 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑓 ) ) |
| 50 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) ) |
| 51 |
6 20 5 50 25 24
|
comfeq |
⊢ ( 𝜑 → ( ( compf ‘ 𝐴 ) = ( compf ‘ 𝐵 ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐴 ) 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑓 ) ) ) |
| 52 |
49 51
|
mpbird |
⊢ ( 𝜑 → ( compf ‘ 𝐴 ) = ( compf ‘ 𝐵 ) ) |