| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpinv.1 | ⊢ 𝑋  =  ran  𝐺 | 
						
							| 2 |  | grpinv.2 | ⊢ 𝑈  =  ( GId ‘ 𝐺 ) | 
						
							| 3 |  | grpinv.3 | ⊢ 𝑁  =  ( inv ‘ 𝐺 ) | 
						
							| 4 | 1 2 3 | grpoinvval | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  →  ( 𝑁 ‘ 𝐴 )  =  ( ℩ 𝑦  ∈  𝑋 ( 𝑦 𝐺 𝐴 )  =  𝑈 ) ) | 
						
							| 5 | 1 2 | grpoinveu | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  →  ∃! 𝑦  ∈  𝑋 ( 𝑦 𝐺 𝐴 )  =  𝑈 ) | 
						
							| 6 |  | riotacl2 | ⊢ ( ∃! 𝑦  ∈  𝑋 ( 𝑦 𝐺 𝐴 )  =  𝑈  →  ( ℩ 𝑦  ∈  𝑋 ( 𝑦 𝐺 𝐴 )  =  𝑈 )  ∈  { 𝑦  ∈  𝑋  ∣  ( 𝑦 𝐺 𝐴 )  =  𝑈 } ) | 
						
							| 7 | 5 6 | syl | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  →  ( ℩ 𝑦  ∈  𝑋 ( 𝑦 𝐺 𝐴 )  =  𝑈 )  ∈  { 𝑦  ∈  𝑋  ∣  ( 𝑦 𝐺 𝐴 )  =  𝑈 } ) | 
						
							| 8 | 4 7 | eqeltrd | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  →  ( 𝑁 ‘ 𝐴 )  ∈  { 𝑦  ∈  𝑋  ∣  ( 𝑦 𝐺 𝐴 )  =  𝑈 } ) | 
						
							| 9 |  | simpl | ⊢ ( ( ( 𝑦 𝐺 𝐴 )  =  𝑈  ∧  ( 𝐴 𝐺 𝑦 )  =  𝑈 )  →  ( 𝑦 𝐺 𝐴 )  =  𝑈 ) | 
						
							| 10 | 9 | rgenw | ⊢ ∀ 𝑦  ∈  𝑋 ( ( ( 𝑦 𝐺 𝐴 )  =  𝑈  ∧  ( 𝐴 𝐺 𝑦 )  =  𝑈 )  →  ( 𝑦 𝐺 𝐴 )  =  𝑈 ) | 
						
							| 11 | 10 | a1i | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  →  ∀ 𝑦  ∈  𝑋 ( ( ( 𝑦 𝐺 𝐴 )  =  𝑈  ∧  ( 𝐴 𝐺 𝑦 )  =  𝑈 )  →  ( 𝑦 𝐺 𝐴 )  =  𝑈 ) ) | 
						
							| 12 | 1 2 | grpoidinv2 | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  →  ( ( ( 𝑈 𝐺 𝐴 )  =  𝐴  ∧  ( 𝐴 𝐺 𝑈 )  =  𝐴 )  ∧  ∃ 𝑦  ∈  𝑋 ( ( 𝑦 𝐺 𝐴 )  =  𝑈  ∧  ( 𝐴 𝐺 𝑦 )  =  𝑈 ) ) ) | 
						
							| 13 | 12 | simprd | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  →  ∃ 𝑦  ∈  𝑋 ( ( 𝑦 𝐺 𝐴 )  =  𝑈  ∧  ( 𝐴 𝐺 𝑦 )  =  𝑈 ) ) | 
						
							| 14 | 11 13 5 | 3jca | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  →  ( ∀ 𝑦  ∈  𝑋 ( ( ( 𝑦 𝐺 𝐴 )  =  𝑈  ∧  ( 𝐴 𝐺 𝑦 )  =  𝑈 )  →  ( 𝑦 𝐺 𝐴 )  =  𝑈 )  ∧  ∃ 𝑦  ∈  𝑋 ( ( 𝑦 𝐺 𝐴 )  =  𝑈  ∧  ( 𝐴 𝐺 𝑦 )  =  𝑈 )  ∧  ∃! 𝑦  ∈  𝑋 ( 𝑦 𝐺 𝐴 )  =  𝑈 ) ) | 
						
							| 15 |  | reupick2 | ⊢ ( ( ( ∀ 𝑦  ∈  𝑋 ( ( ( 𝑦 𝐺 𝐴 )  =  𝑈  ∧  ( 𝐴 𝐺 𝑦 )  =  𝑈 )  →  ( 𝑦 𝐺 𝐴 )  =  𝑈 )  ∧  ∃ 𝑦  ∈  𝑋 ( ( 𝑦 𝐺 𝐴 )  =  𝑈  ∧  ( 𝐴 𝐺 𝑦 )  =  𝑈 )  ∧  ∃! 𝑦  ∈  𝑋 ( 𝑦 𝐺 𝐴 )  =  𝑈 )  ∧  𝑦  ∈  𝑋 )  →  ( ( 𝑦 𝐺 𝐴 )  =  𝑈  ↔  ( ( 𝑦 𝐺 𝐴 )  =  𝑈  ∧  ( 𝐴 𝐺 𝑦 )  =  𝑈 ) ) ) | 
						
							| 16 | 14 15 | sylan | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  →  ( ( 𝑦 𝐺 𝐴 )  =  𝑈  ↔  ( ( 𝑦 𝐺 𝐴 )  =  𝑈  ∧  ( 𝐴 𝐺 𝑦 )  =  𝑈 ) ) ) | 
						
							| 17 | 16 | rabbidva | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  →  { 𝑦  ∈  𝑋  ∣  ( 𝑦 𝐺 𝐴 )  =  𝑈 }  =  { 𝑦  ∈  𝑋  ∣  ( ( 𝑦 𝐺 𝐴 )  =  𝑈  ∧  ( 𝐴 𝐺 𝑦 )  =  𝑈 ) } ) | 
						
							| 18 | 8 17 | eleqtrd | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  →  ( 𝑁 ‘ 𝐴 )  ∈  { 𝑦  ∈  𝑋  ∣  ( ( 𝑦 𝐺 𝐴 )  =  𝑈  ∧  ( 𝐴 𝐺 𝑦 )  =  𝑈 ) } ) | 
						
							| 19 |  | oveq1 | ⊢ ( 𝑦  =  ( 𝑁 ‘ 𝐴 )  →  ( 𝑦 𝐺 𝐴 )  =  ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝐴 ) ) | 
						
							| 20 | 19 | eqeq1d | ⊢ ( 𝑦  =  ( 𝑁 ‘ 𝐴 )  →  ( ( 𝑦 𝐺 𝐴 )  =  𝑈  ↔  ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝐴 )  =  𝑈 ) ) | 
						
							| 21 |  | oveq2 | ⊢ ( 𝑦  =  ( 𝑁 ‘ 𝐴 )  →  ( 𝐴 𝐺 𝑦 )  =  ( 𝐴 𝐺 ( 𝑁 ‘ 𝐴 ) ) ) | 
						
							| 22 | 21 | eqeq1d | ⊢ ( 𝑦  =  ( 𝑁 ‘ 𝐴 )  →  ( ( 𝐴 𝐺 𝑦 )  =  𝑈  ↔  ( 𝐴 𝐺 ( 𝑁 ‘ 𝐴 ) )  =  𝑈 ) ) | 
						
							| 23 | 20 22 | anbi12d | ⊢ ( 𝑦  =  ( 𝑁 ‘ 𝐴 )  →  ( ( ( 𝑦 𝐺 𝐴 )  =  𝑈  ∧  ( 𝐴 𝐺 𝑦 )  =  𝑈 )  ↔  ( ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝐴 )  =  𝑈  ∧  ( 𝐴 𝐺 ( 𝑁 ‘ 𝐴 ) )  =  𝑈 ) ) ) | 
						
							| 24 | 23 | elrab | ⊢ ( ( 𝑁 ‘ 𝐴 )  ∈  { 𝑦  ∈  𝑋  ∣  ( ( 𝑦 𝐺 𝐴 )  =  𝑈  ∧  ( 𝐴 𝐺 𝑦 )  =  𝑈 ) }  ↔  ( ( 𝑁 ‘ 𝐴 )  ∈  𝑋  ∧  ( ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝐴 )  =  𝑈  ∧  ( 𝐴 𝐺 ( 𝑁 ‘ 𝐴 ) )  =  𝑈 ) ) ) | 
						
							| 25 | 18 24 | sylib | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  →  ( ( 𝑁 ‘ 𝐴 )  ∈  𝑋  ∧  ( ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝐴 )  =  𝑈  ∧  ( 𝐴 𝐺 ( 𝑁 ‘ 𝐴 ) )  =  𝑈 ) ) ) | 
						
							| 26 | 25 | simprd | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  →  ( ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝐴 )  =  𝑈  ∧  ( 𝐴 𝐺 ( 𝑁 ‘ 𝐴 ) )  =  𝑈 ) ) |