| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpinv.1 |  |-  X = ran G | 
						
							| 2 |  | grpinv.2 |  |-  U = ( GId ` G ) | 
						
							| 3 |  | grpinv.3 |  |-  N = ( inv ` G ) | 
						
							| 4 | 1 2 3 | grpoinvval |  |-  ( ( G e. GrpOp /\ A e. X ) -> ( N ` A ) = ( iota_ y e. X ( y G A ) = U ) ) | 
						
							| 5 | 1 2 | grpoinveu |  |-  ( ( G e. GrpOp /\ A e. X ) -> E! y e. X ( y G A ) = U ) | 
						
							| 6 |  | riotacl2 |  |-  ( E! y e. X ( y G A ) = U -> ( iota_ y e. X ( y G A ) = U ) e. { y e. X | ( y G A ) = U } ) | 
						
							| 7 | 5 6 | syl |  |-  ( ( G e. GrpOp /\ A e. X ) -> ( iota_ y e. X ( y G A ) = U ) e. { y e. X | ( y G A ) = U } ) | 
						
							| 8 | 4 7 | eqeltrd |  |-  ( ( G e. GrpOp /\ A e. X ) -> ( N ` A ) e. { y e. X | ( y G A ) = U } ) | 
						
							| 9 |  | simpl |  |-  ( ( ( y G A ) = U /\ ( A G y ) = U ) -> ( y G A ) = U ) | 
						
							| 10 | 9 | rgenw |  |-  A. y e. X ( ( ( y G A ) = U /\ ( A G y ) = U ) -> ( y G A ) = U ) | 
						
							| 11 | 10 | a1i |  |-  ( ( G e. GrpOp /\ A e. X ) -> A. y e. X ( ( ( y G A ) = U /\ ( A G y ) = U ) -> ( y G A ) = U ) ) | 
						
							| 12 | 1 2 | grpoidinv2 |  |-  ( ( G e. GrpOp /\ A e. X ) -> ( ( ( U G A ) = A /\ ( A G U ) = A ) /\ E. y e. X ( ( y G A ) = U /\ ( A G y ) = U ) ) ) | 
						
							| 13 | 12 | simprd |  |-  ( ( G e. GrpOp /\ A e. X ) -> E. y e. X ( ( y G A ) = U /\ ( A G y ) = U ) ) | 
						
							| 14 | 11 13 5 | 3jca |  |-  ( ( G e. GrpOp /\ A e. X ) -> ( A. y e. X ( ( ( y G A ) = U /\ ( A G y ) = U ) -> ( y G A ) = U ) /\ E. y e. X ( ( y G A ) = U /\ ( A G y ) = U ) /\ E! y e. X ( y G A ) = U ) ) | 
						
							| 15 |  | reupick2 |  |-  ( ( ( A. y e. X ( ( ( y G A ) = U /\ ( A G y ) = U ) -> ( y G A ) = U ) /\ E. y e. X ( ( y G A ) = U /\ ( A G y ) = U ) /\ E! y e. X ( y G A ) = U ) /\ y e. X ) -> ( ( y G A ) = U <-> ( ( y G A ) = U /\ ( A G y ) = U ) ) ) | 
						
							| 16 | 14 15 | sylan |  |-  ( ( ( G e. GrpOp /\ A e. X ) /\ y e. X ) -> ( ( y G A ) = U <-> ( ( y G A ) = U /\ ( A G y ) = U ) ) ) | 
						
							| 17 | 16 | rabbidva |  |-  ( ( G e. GrpOp /\ A e. X ) -> { y e. X | ( y G A ) = U } = { y e. X | ( ( y G A ) = U /\ ( A G y ) = U ) } ) | 
						
							| 18 | 8 17 | eleqtrd |  |-  ( ( G e. GrpOp /\ A e. X ) -> ( N ` A ) e. { y e. X | ( ( y G A ) = U /\ ( A G y ) = U ) } ) | 
						
							| 19 |  | oveq1 |  |-  ( y = ( N ` A ) -> ( y G A ) = ( ( N ` A ) G A ) ) | 
						
							| 20 | 19 | eqeq1d |  |-  ( y = ( N ` A ) -> ( ( y G A ) = U <-> ( ( N ` A ) G A ) = U ) ) | 
						
							| 21 |  | oveq2 |  |-  ( y = ( N ` A ) -> ( A G y ) = ( A G ( N ` A ) ) ) | 
						
							| 22 | 21 | eqeq1d |  |-  ( y = ( N ` A ) -> ( ( A G y ) = U <-> ( A G ( N ` A ) ) = U ) ) | 
						
							| 23 | 20 22 | anbi12d |  |-  ( y = ( N ` A ) -> ( ( ( y G A ) = U /\ ( A G y ) = U ) <-> ( ( ( N ` A ) G A ) = U /\ ( A G ( N ` A ) ) = U ) ) ) | 
						
							| 24 | 23 | elrab |  |-  ( ( N ` A ) e. { y e. X | ( ( y G A ) = U /\ ( A G y ) = U ) } <-> ( ( N ` A ) e. X /\ ( ( ( N ` A ) G A ) = U /\ ( A G ( N ` A ) ) = U ) ) ) | 
						
							| 25 | 18 24 | sylib |  |-  ( ( G e. GrpOp /\ A e. X ) -> ( ( N ` A ) e. X /\ ( ( ( N ` A ) G A ) = U /\ ( A G ( N ` A ) ) = U ) ) ) | 
						
							| 26 | 25 | simprd |  |-  ( ( G e. GrpOp /\ A e. X ) -> ( ( ( N ` A ) G A ) = U /\ ( A G ( N ` A ) ) = U ) ) |