Metamath Proof Explorer


Theorem gruen

Description: A Grothendieck universe contains all subsets of itself that are equipotent to an element of the universe. (Contributed by Mario Carneiro, 9-Jun-2013)

Ref Expression
Assertion gruen ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈 ∧ ( 𝐵𝑈𝐵𝐴 ) ) → 𝐴𝑈 )

Proof

Step Hyp Ref Expression
1 bren ( 𝐵𝐴 ↔ ∃ 𝑦 𝑦 : 𝐵1-1-onto𝐴 )
2 f1ofo ( 𝑦 : 𝐵1-1-onto𝐴𝑦 : 𝐵onto𝐴 )
3 simp3l ( ( 𝑈 ∈ Univ ∧ 𝐵𝑈 ∧ ( 𝑦 : 𝐵onto𝐴𝐴𝑈 ) ) → 𝑦 : 𝐵onto𝐴 )
4 forn ( 𝑦 : 𝐵onto𝐴 → ran 𝑦 = 𝐴 )
5 3 4 syl ( ( 𝑈 ∈ Univ ∧ 𝐵𝑈 ∧ ( 𝑦 : 𝐵onto𝐴𝐴𝑈 ) ) → ran 𝑦 = 𝐴 )
6 fof ( 𝑦 : 𝐵onto𝐴𝑦 : 𝐵𝐴 )
7 fss ( ( 𝑦 : 𝐵𝐴𝐴𝑈 ) → 𝑦 : 𝐵𝑈 )
8 6 7 sylan ( ( 𝑦 : 𝐵onto𝐴𝐴𝑈 ) → 𝑦 : 𝐵𝑈 )
9 grurn ( ( 𝑈 ∈ Univ ∧ 𝐵𝑈𝑦 : 𝐵𝑈 ) → ran 𝑦𝑈 )
10 8 9 syl3an3 ( ( 𝑈 ∈ Univ ∧ 𝐵𝑈 ∧ ( 𝑦 : 𝐵onto𝐴𝐴𝑈 ) ) → ran 𝑦𝑈 )
11 5 10 eqeltrrd ( ( 𝑈 ∈ Univ ∧ 𝐵𝑈 ∧ ( 𝑦 : 𝐵onto𝐴𝐴𝑈 ) ) → 𝐴𝑈 )
12 11 3expia ( ( 𝑈 ∈ Univ ∧ 𝐵𝑈 ) → ( ( 𝑦 : 𝐵onto𝐴𝐴𝑈 ) → 𝐴𝑈 ) )
13 12 expd ( ( 𝑈 ∈ Univ ∧ 𝐵𝑈 ) → ( 𝑦 : 𝐵onto𝐴 → ( 𝐴𝑈𝐴𝑈 ) ) )
14 2 13 syl5 ( ( 𝑈 ∈ Univ ∧ 𝐵𝑈 ) → ( 𝑦 : 𝐵1-1-onto𝐴 → ( 𝐴𝑈𝐴𝑈 ) ) )
15 14 exlimdv ( ( 𝑈 ∈ Univ ∧ 𝐵𝑈 ) → ( ∃ 𝑦 𝑦 : 𝐵1-1-onto𝐴 → ( 𝐴𝑈𝐴𝑈 ) ) )
16 15 com3r ( 𝐴𝑈 → ( ( 𝑈 ∈ Univ ∧ 𝐵𝑈 ) → ( ∃ 𝑦 𝑦 : 𝐵1-1-onto𝐴𝐴𝑈 ) ) )
17 16 expdimp ( ( 𝐴𝑈𝑈 ∈ Univ ) → ( 𝐵𝑈 → ( ∃ 𝑦 𝑦 : 𝐵1-1-onto𝐴𝐴𝑈 ) ) )
18 1 17 syl7bi ( ( 𝐴𝑈𝑈 ∈ Univ ) → ( 𝐵𝑈 → ( 𝐵𝐴𝐴𝑈 ) ) )
19 18 impd ( ( 𝐴𝑈𝑈 ∈ Univ ) → ( ( 𝐵𝑈𝐵𝐴 ) → 𝐴𝑈 ) )
20 19 ancoms ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈 ) → ( ( 𝐵𝑈𝐵𝐴 ) → 𝐴𝑈 ) )
21 20 3impia ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈 ∧ ( 𝐵𝑈𝐵𝐴 ) ) → 𝐴𝑈 )