| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bren |
⊢ ( 𝐵 ≈ 𝐴 ↔ ∃ 𝑦 𝑦 : 𝐵 –1-1-onto→ 𝐴 ) |
| 2 |
|
f1ofo |
⊢ ( 𝑦 : 𝐵 –1-1-onto→ 𝐴 → 𝑦 : 𝐵 –onto→ 𝐴 ) |
| 3 |
|
simp3l |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈 ∧ ( 𝑦 : 𝐵 –onto→ 𝐴 ∧ 𝐴 ⊆ 𝑈 ) ) → 𝑦 : 𝐵 –onto→ 𝐴 ) |
| 4 |
|
forn |
⊢ ( 𝑦 : 𝐵 –onto→ 𝐴 → ran 𝑦 = 𝐴 ) |
| 5 |
3 4
|
syl |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈 ∧ ( 𝑦 : 𝐵 –onto→ 𝐴 ∧ 𝐴 ⊆ 𝑈 ) ) → ran 𝑦 = 𝐴 ) |
| 6 |
|
fof |
⊢ ( 𝑦 : 𝐵 –onto→ 𝐴 → 𝑦 : 𝐵 ⟶ 𝐴 ) |
| 7 |
|
fss |
⊢ ( ( 𝑦 : 𝐵 ⟶ 𝐴 ∧ 𝐴 ⊆ 𝑈 ) → 𝑦 : 𝐵 ⟶ 𝑈 ) |
| 8 |
6 7
|
sylan |
⊢ ( ( 𝑦 : 𝐵 –onto→ 𝐴 ∧ 𝐴 ⊆ 𝑈 ) → 𝑦 : 𝐵 ⟶ 𝑈 ) |
| 9 |
|
grurn |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈 ∧ 𝑦 : 𝐵 ⟶ 𝑈 ) → ran 𝑦 ∈ 𝑈 ) |
| 10 |
8 9
|
syl3an3 |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈 ∧ ( 𝑦 : 𝐵 –onto→ 𝐴 ∧ 𝐴 ⊆ 𝑈 ) ) → ran 𝑦 ∈ 𝑈 ) |
| 11 |
5 10
|
eqeltrrd |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈 ∧ ( 𝑦 : 𝐵 –onto→ 𝐴 ∧ 𝐴 ⊆ 𝑈 ) ) → 𝐴 ∈ 𝑈 ) |
| 12 |
11
|
3expia |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈 ) → ( ( 𝑦 : 𝐵 –onto→ 𝐴 ∧ 𝐴 ⊆ 𝑈 ) → 𝐴 ∈ 𝑈 ) ) |
| 13 |
12
|
expd |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈 ) → ( 𝑦 : 𝐵 –onto→ 𝐴 → ( 𝐴 ⊆ 𝑈 → 𝐴 ∈ 𝑈 ) ) ) |
| 14 |
2 13
|
syl5 |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈 ) → ( 𝑦 : 𝐵 –1-1-onto→ 𝐴 → ( 𝐴 ⊆ 𝑈 → 𝐴 ∈ 𝑈 ) ) ) |
| 15 |
14
|
exlimdv |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈 ) → ( ∃ 𝑦 𝑦 : 𝐵 –1-1-onto→ 𝐴 → ( 𝐴 ⊆ 𝑈 → 𝐴 ∈ 𝑈 ) ) ) |
| 16 |
15
|
com3r |
⊢ ( 𝐴 ⊆ 𝑈 → ( ( 𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈 ) → ( ∃ 𝑦 𝑦 : 𝐵 –1-1-onto→ 𝐴 → 𝐴 ∈ 𝑈 ) ) ) |
| 17 |
16
|
expdimp |
⊢ ( ( 𝐴 ⊆ 𝑈 ∧ 𝑈 ∈ Univ ) → ( 𝐵 ∈ 𝑈 → ( ∃ 𝑦 𝑦 : 𝐵 –1-1-onto→ 𝐴 → 𝐴 ∈ 𝑈 ) ) ) |
| 18 |
1 17
|
syl7bi |
⊢ ( ( 𝐴 ⊆ 𝑈 ∧ 𝑈 ∈ Univ ) → ( 𝐵 ∈ 𝑈 → ( 𝐵 ≈ 𝐴 → 𝐴 ∈ 𝑈 ) ) ) |
| 19 |
18
|
impd |
⊢ ( ( 𝐴 ⊆ 𝑈 ∧ 𝑈 ∈ Univ ) → ( ( 𝐵 ∈ 𝑈 ∧ 𝐵 ≈ 𝐴 ) → 𝐴 ∈ 𝑈 ) ) |
| 20 |
19
|
ancoms |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ⊆ 𝑈 ) → ( ( 𝐵 ∈ 𝑈 ∧ 𝐵 ≈ 𝐴 ) → 𝐴 ∈ 𝑈 ) ) |
| 21 |
20
|
3impia |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ⊆ 𝑈 ∧ ( 𝐵 ∈ 𝑈 ∧ 𝐵 ≈ 𝐴 ) ) → 𝐴 ∈ 𝑈 ) |