Step |
Hyp |
Ref |
Expression |
1 |
|
gsumval3.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
gsumval3.0 |
⊢ 0 = ( 0g ‘ 𝐺 ) |
3 |
|
gsumval3.p |
⊢ + = ( +g ‘ 𝐺 ) |
4 |
|
gsumval3.z |
⊢ 𝑍 = ( Cntz ‘ 𝐺 ) |
5 |
|
gsumval3.g |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
6 |
|
gsumval3.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
7 |
|
gsumval3.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
8 |
|
gsumval3.c |
⊢ ( 𝜑 → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) |
9 |
|
gsumval3a.t |
⊢ ( 𝜑 → 𝑊 ∈ Fin ) |
10 |
|
gsumval3a.n |
⊢ ( 𝜑 → 𝑊 ≠ ∅ ) |
11 |
|
gsumval3a.w |
⊢ 𝑊 = ( 𝐹 supp 0 ) |
12 |
|
gsumval3a.i |
⊢ ( 𝜑 → ¬ 𝐴 ∈ ran ... ) |
13 |
|
eqid |
⊢ { 𝑧 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑧 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑧 ) = 𝑦 ) } = { 𝑧 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑧 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑧 ) = 𝑦 ) } |
14 |
11
|
a1i |
⊢ ( 𝜑 → 𝑊 = ( 𝐹 supp 0 ) ) |
15 |
7 6
|
fexd |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
16 |
2
|
fvexi |
⊢ 0 ∈ V |
17 |
|
suppimacnv |
⊢ ( ( 𝐹 ∈ V ∧ 0 ∈ V ) → ( 𝐹 supp 0 ) = ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) |
18 |
15 16 17
|
sylancl |
⊢ ( 𝜑 → ( 𝐹 supp 0 ) = ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) |
19 |
1 2 3 13
|
gsumvallem2 |
⊢ ( 𝐺 ∈ Mnd → { 𝑧 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑧 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑧 ) = 𝑦 ) } = { 0 } ) |
20 |
5 19
|
syl |
⊢ ( 𝜑 → { 𝑧 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑧 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑧 ) = 𝑦 ) } = { 0 } ) |
21 |
20
|
eqcomd |
⊢ ( 𝜑 → { 0 } = { 𝑧 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑧 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑧 ) = 𝑦 ) } ) |
22 |
21
|
difeq2d |
⊢ ( 𝜑 → ( V ∖ { 0 } ) = ( V ∖ { 𝑧 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑧 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑧 ) = 𝑦 ) } ) ) |
23 |
22
|
imaeq2d |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) = ( ◡ 𝐹 “ ( V ∖ { 𝑧 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑧 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑧 ) = 𝑦 ) } ) ) ) |
24 |
14 18 23
|
3eqtrd |
⊢ ( 𝜑 → 𝑊 = ( ◡ 𝐹 “ ( V ∖ { 𝑧 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑧 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑧 ) = 𝑦 ) } ) ) ) |
25 |
1 2 3 13 24 5 6 7
|
gsumval |
⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = if ( ran 𝐹 ⊆ { 𝑧 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑧 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑧 ) = 𝑦 ) } , 0 , if ( 𝐴 ∈ ran ... , ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ) ) ) |
26 |
20
|
sseq2d |
⊢ ( 𝜑 → ( ran 𝐹 ⊆ { 𝑧 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑧 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑧 ) = 𝑦 ) } ↔ ran 𝐹 ⊆ { 0 } ) ) |
27 |
11
|
a1i |
⊢ ( ( 𝜑 ∧ ran 𝐹 ⊆ { 0 } ) → 𝑊 = ( 𝐹 supp 0 ) ) |
28 |
7 6
|
jca |
⊢ ( 𝜑 → ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ) ) |
29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ ran 𝐹 ⊆ { 0 } ) → ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ) ) |
30 |
|
fex |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ) → 𝐹 ∈ V ) |
31 |
29 30
|
syl |
⊢ ( ( 𝜑 ∧ ran 𝐹 ⊆ { 0 } ) → 𝐹 ∈ V ) |
32 |
31 16 17
|
sylancl |
⊢ ( ( 𝜑 ∧ ran 𝐹 ⊆ { 0 } ) → ( 𝐹 supp 0 ) = ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) |
33 |
7
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ ran 𝐹 ⊆ { 0 } ) → 𝐹 Fn 𝐴 ) |
35 |
|
simpr |
⊢ ( ( 𝜑 ∧ ran 𝐹 ⊆ { 0 } ) → ran 𝐹 ⊆ { 0 } ) |
36 |
|
df-f |
⊢ ( 𝐹 : 𝐴 ⟶ { 0 } ↔ ( 𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ { 0 } ) ) |
37 |
34 35 36
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ran 𝐹 ⊆ { 0 } ) → 𝐹 : 𝐴 ⟶ { 0 } ) |
38 |
|
disjdif |
⊢ ( { 0 } ∩ ( V ∖ { 0 } ) ) = ∅ |
39 |
|
fimacnvdisj |
⊢ ( ( 𝐹 : 𝐴 ⟶ { 0 } ∧ ( { 0 } ∩ ( V ∖ { 0 } ) ) = ∅ ) → ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ) |
40 |
37 38 39
|
sylancl |
⊢ ( ( 𝜑 ∧ ran 𝐹 ⊆ { 0 } ) → ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ) |
41 |
27 32 40
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ran 𝐹 ⊆ { 0 } ) → 𝑊 = ∅ ) |
42 |
41
|
ex |
⊢ ( 𝜑 → ( ran 𝐹 ⊆ { 0 } → 𝑊 = ∅ ) ) |
43 |
26 42
|
sylbid |
⊢ ( 𝜑 → ( ran 𝐹 ⊆ { 𝑧 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑧 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑧 ) = 𝑦 ) } → 𝑊 = ∅ ) ) |
44 |
43
|
necon3ad |
⊢ ( 𝜑 → ( 𝑊 ≠ ∅ → ¬ ran 𝐹 ⊆ { 𝑧 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑧 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑧 ) = 𝑦 ) } ) ) |
45 |
10 44
|
mpd |
⊢ ( 𝜑 → ¬ ran 𝐹 ⊆ { 𝑧 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑧 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑧 ) = 𝑦 ) } ) |
46 |
45
|
iffalsed |
⊢ ( 𝜑 → if ( ran 𝐹 ⊆ { 𝑧 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑧 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑧 ) = 𝑦 ) } , 0 , if ( 𝐴 ∈ ran ... , ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ) ) = if ( 𝐴 ∈ ran ... , ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ) ) |
47 |
12
|
iffalsed |
⊢ ( 𝜑 → if ( 𝐴 ∈ ran ... , ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ) = ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ) |
48 |
25 46 47
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ) |